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Abstract

Predicting the effects of a new policy often relies on existing evidence of the same policy

in other contexts. However, cross-contexts predictions may fail because those contexts

may have distinct characteristics and the same policies may function differently across

contexts. In such cases, one might want to make predictions based on similar policies in

one’s own context to hold local factors constant. This paper compares these approaches

using cash transfer programs in Malawi and Morocco. By predicting the treatment effect

of Moroccan CCTs on school enrollment rates based on either Malawi CCTs or Moroccan

labeled cash transfers (LCTs), I show that predictions based on the Moroccan LCTs (across

policies) are more accurate than the Malawi CCTs (across contexts). To shed light on the

sources of the difference, I estimate a dynamic model of schooling decisions under each

intervention separately and compare the estimated parameters across the interventions. I

find that perceived returns to schooling relative to outside options explain the differential

predictions. I suggest that differences in the underlying mechanisms of the Malawi and

Moroccan CCTs are reflected in the cross-contexts variation of the relative returns.
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1 Introduction

Predicting the effects of a new policy is a central challenge for policymakers. The accuracy

of such predictions depends on the internal and external validity of the evidence. While

methodological developments in causal inference have significantly improved the internal validity

of existing evidence, concerns about external validity remain. Previous research on out-of-sample

predictions has primarily focused on extrapolating evidence within policies across contexts (i.e.,

across-contexts extrapolation).1 However, little is known about whether one can also learn from

the extrapolation of evidence within contexts across policies (i.e., across-policies extrapolation).

This paper aims to shed light on the usefulness of across-policies extrapolation in the case of

conditional cash transfer programs designed to improve educational outcomes.

Accurate predictions about the effect size of a new policy are crucial for policymakers to

make informed decisions about its cost-effectiveness. Conditional cash transfers (CCTs) serve

as a prime example of the importance of cost-effectiveness in policymaking. CCTs provide

cash to poor households conditional on certain behavioral requirements, and have become

a popular anti-poverty policy in developing countries. The most common version of CCTs

requires children to attend school regularly, which theoretically increases school enrollment

through an income and substitution effect by lowering the price of schooling.2 The estimated

effect size, however, varies across CCT programs, suggesting potential heterogeneity in their

cost-effectiveness.3 Therefore, it is important for policymakers in developing countries who

consider CCTs to improve domestic education to quantify the effects of CCTs beforehand to

determine whether they are a cost-effective policy to implement.4

When microdata are available, researchers often rely on extrapolating from CCTs in neigh-

boring contexts to make predictions, assuming that treatment effects remain constant across

contexts conditional on various covariates.5 However, the assumption of comparability across

contexts is not always valid even for geographically proximate regions. Moreover, as CCTs
1The word “context” includes target populations and locations as well as details about the implementation

of policies. Allcott (2015) defined “site” similarly.
2The income effect of CCTs is positive on schooling if education is a normal good. The substitution effect

is also positive as CCTs raise the opportunity costs of non-schooling. Overall, CCTs should increase school
enrollment.

3See Baird et al. (2014) for a recent review on the effects of CCTs on education outcomes.
4The fiscal and administrative costs also contribute to heterogeneity in the cost-effectiveness of CCTs. See

García and Saavedra (2017) for a meta-analysis on the cost-effectiveness of various CCT programs and Caldés
et al. (2006) for a comparison of the cost structure of CCTs across three programs in Mexico, Honduras, and
Nicaragua.

5An even simpler approach without microdata is to make predictions based on a collection of treatment effect
estimates of CCTs in other places. I show the prediction performance of this approach in Appendix A.
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are predominantly implemented in Latin America, finding comparable neighboring contexts

may not always be feasible. Therefore, policymakers may consider extrapolating from different

policies in their own contexts if they are informative about the behavioral responses expected

under CCTs. For example, positive rainfall shocks to household income arguably increase

school enrollment through a similar income effect, despite the source of the income shocks being

different (Foster and Gehrke, 2017; Shah and Steinberg, 2017). An open question is whether

these two extrapolations - across-contexts extrapolation and across-policies extrapolation -

result in different predictions about the effects of CCTs.

To tackle this question, I examine cash transfer programs in Malawi and Morocco (Baird

et al., 2011; Benhassine et al., 2015). The two programs are an ideal setting to study the question

for several reasons. First, there are three cash transfer interventions that are necessary to define

the two extrapolations. Both programs implemented CCTs that provided cash to households

conditional on regular school attendance. In addition, the Moroccan experiment had another

cash transfer intervention (Labeled Cash Transfers, or hereafter referred to as LCTs), which

provided cash irrespective of school attendance. By using these three interventions, I define the

across-contexts extrapolation as extrapolating from the Malawi CCTs to the Moroccan CCTs

while the across-policies extrapolation is from the Moroccan LCTs to the Moroccan CCTs.

Second, both programs were implemented as randomized controlled trials (RCTs), providing

reliable estimates of treatment effects thanks to a credible source of identifying variation. This

exogenous variation also allows my extrapolation methods to derive causal interpretations so

that I can focus my analysis on the external validity of the interventions. Finally, the microdata

of the two programs are publicly available. To the best of my knowledge, the two programs

are the only combination that allows me to study the extrapolation problem about the effects

of CCTs on education in the same continent. By combining these experiments, I set up a

prediction exercise. I predict the average effect, or intention-to-treat effect, of the Moroccan

CCTs on school enrollment rates by extrapolating from the other two interventions. After

making these predictions, I then evaluate them against the actual estimate of the treatment

effect. In my data, I estimate that the Moroccan CCTs increased the enrollment rate of the

treatment group by 5.7 percentage points from a base of 89.4 percent.

My across-contexts extrapolation uses two off-the-shelf reduced-form approaches that are

commonly used for out-of-sample prediction: heterogeneous treatment effects approach and

propensity score weighting. The first approach estimates a heterogeneous treatment effect model

3



using the sample from the Malawi CCTs and applies the estimated model to the Moroccan CCTs’

sample. The second approach combines the two samples to compute the propensity of being

in the Malawi CCTs’ sample and predict the treatment effect with the Malawi CCTs’ sample

weighted by the inverse of the propensity score. A key assumption behind these approaches

is that conditional on observables, potential outcomes are independent of contexts so that

policy effects (or in other words, how CCTs induce schooling) are the same across contexts. To

the extent that this assumption is satisfied, the across-contexts extrapolation makes accurate

predictions.

My across-policies extrapolation, on the other hand, uses a structural approach. I construct

a dynamic discrete choice model of schooling decisions in which a child (or their parents) chooses

whether to go to school over a finite time horizon. When the child chooses schooling, then they

pay school costs and obtain a year of education. When the child chooses not schooling, then

they consume all of their income. At the terminal period, the child receives lump-sum returns

based on years of education accumulated by that time. The model treats CCTs and LCTs as

exogenous shocks that relax flow budget constraints but through different channels: CCTs lower

school costs while LCTs increase (per-capita) household income. By leveraging the shocks to

flow budget constraints created by the Moroccan LCTs, I causally estimate this model and

simulate schooling decisions for the Moroccan CCTs’ sample. The resulting predictions would

be accurate if the substitution effect of the CCTs is small relative to the income effect and the

income effect of the CCTs is similar in magnitude to that of the LCTs, or if both the CCTs

and LCTs encourage schooling via common mechanisms different from alleviating flow budget

constraints.

My extrapolation results show that the across-policies extrapolation outperforms the across-

contexts extrapolation. The across-contexts extrapolation underpredicts the treatment effect.

While the heterogeneous treatment effects approach predicts that the treatment effect is 1.56

percentage points, the propensity score weighting approach finds a null effect, neither of which

has a 95 percent confidence interval that contains the true estimate. In contrast, the across-

policies extrapolation makes accurate predictions. It predicts that the treatment effect is 5.77

or 5.90 percentage points and the equality between the prediction and the true estimate is

not rejected at a significance level of 0.05. The results are robust when I use a data-driven

way of selecting covariates as well as when I apply the same structural approach in the across-

contexts extrapolation. Therefore, the across-policies extrapolation yields both numerically and
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statistically accurate predictions, compared to the across-contexts extrapolation.

To understand the sources of the differential predictions of the two extrapolations, I collapse

my comparative analysis to the comparison of two parameters in my structural model that are

key to illustrate an inter-temporal trade-off regarding schooling decisions - flow utility cost of

schooling and perceived returns to schooling relative to outside options - across the interventions.

In particular, I estimate my model separately for each intervention, and compare the estimated

parameters across the interventions to determine which parameter explains the disparity in the

extrapolation results.

I find that the differences between the two extrapolations stem from the perceived relative

returns to schooling. I first observe that the estimates of the utility cost of schooling are

numerically closer for the same policy (or across the contexts) than the same context (or across

the policies). This already implies that the relative returns should be similar across the policies

and are essential for accurate predictions, given the better performance of the across-policies

extrapolation. I verify this similarity by comparing the estimates of the relative returns under

the Moroccan CCTs with the extrapolated values from the two interventions. I find that the

predicted values from the Moroccan LCTs are decreasing in years of education and are parallel

to the estimated values, whereas those from the Malawi CCTs are increasing over the same

domain. I also conduct a decomposition analysis in which I replace one of the parameter values

used in the across-contexts extrapolation with the true values estimated with the Moroccan

CCTs. I find that the prediction improves only when I use the true values for the relative

returns. Finally, I show that the differences in the relative returns across the contexts cannot

be fully eliminated by examining observationally similar subsamples across the contexts.

I then argue that the remaining variation in the perceived relative returns to schooling can

be attributed to differences in the underlying mechanisms regarding how the cash transfers

induce schooling. This is because the relative returns are identified via the residual variation

in schooling that is not explained by exogenous changes in the flow utility cost of schooling

due to the cash transfers. In other words, the identification of the utility cost is built on the

economic intuition that cash transfers induce schooling by relaxing flow budget constraints, and

any deviations from that are captured by the relative returns. This means that the estimates

of the utility cost are similar between the two CCTs, to the extent that schooling decisions

in both contexts are explained by the economic reasoning. On the other hand, the estimated

relative returns are similar between the two Moroccan interventions, to the extent that schooling
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decisions under those interventions are driven by any other mechanisms. The fact that the

relative returns account for the prediction differences is indeed aligned with the prior that the

across-policies extrapolation is more successful than the across-contexts extrapolation when the

Moroccan CCTs induce schooling in a similar way to the Moroccan LCTs but differently from

the Malawi CCTs.

Consistent with this discussion, Benhassine et al. (2015) provided two possible explanations

for the similarities in the underlying mechanisms between the CCTs and LCTs: a signaling

effect and a misunderstanding of the conditionality. First, the authors argued that the signaling

effect about the importance of education was attached to the two cash transfer interventions

through the endorsement of the experiment by the Ministry of Education and could have driven

the effects of the interventions. Second, they also argued that the treated households in the

CCT arm misunderstood that the cash transfers were unconditional. While both explanations

suggest similarities in the underlying mechanisms of the two interventions, it is unlikely that the

confusion about the conditionality is the main source of similarity, given that the estimates of

the flow utility cost of schooling sufficiently differ across the two interventions. Corroborating

this, in my counterfactual analysis, I demonstrate that removing the misunderstanding of the

conditionality does not alter the relative performance of the two extrapolation approaches.

Thus, I conclude that the two interventions may be similar perhaps due to the signaling effect,

which may not be the primary driver of the effects of the Malawi CCTs.

Although my analysis does not claim that extrapolation across policies always outperforms

extrapolation across contexts in prediction accuracy, it instead shows that policies that are

ostensibly similar may have different underlying mechanisms, leading to the failure of naive

extrapolation across contexts. My analysis then suggests that a local policy that resembles

how the target policy of interest works can be exploited via structural approaches to obtain

accurate out-of-sample predictions. In other words, accurate out-of-sample predictions require

the extrapolation of policies with the same underlying mechanisms, whether extrapolating

across contexts or policies.

This paper is broadly related to the literature on the empirical investigation of the validity

of out-of-sample predictions. Previous research in this literature has focused on extrapolation

from one context to another for the same policies and proposed various approaches to account

for differences between the contexts (e.g. Hotz et al. 2005; Stuart et al. 2011; Andrews and

Oster 2019; Meager 2019; Rosenzweig and Udry 2020; Vivalt 2020; Bandiera 2021; Dehejia et al.
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2021; Gechter 2022; Meager 2022).6 Those approaches, however, may fail to yield accurate

predictions if the target context differs significantly from the sample contexts, even after

controlling for various observable characteristics. For example, Hotz et al. (2005) found that

extrapolating the effects of job training programs for workers without working experiences based

on observationally similar workers in training datasets led to inaccurate predictions. Allcott

(2015) provided evidence of site selection bias, indicating that earlier experimental sites are

positively selected. This paper contributes to this literature by demonstrating that differences in

underlying mechanisms can also lead to poor predictions via extrapolation across contexts. I also

show that when extrapolation across contexts fails to produce reliable predictions, exploiting

variation within contexts can serve as an alternative way to do so. This paper presents the

first example of such a case and discusses when extrapolation across policies outperforms

extrapolation across contexts.

The closest comparison to this paper is Gechter et al. (2018). They evaluated various

extrapolation methods based on a welfare measure in the case of CCTs. In particular, they

compared reduced-form approaches for extrapolation from experimental data in a different

context with structural approaches for extrapolation from pre-treatment data in the target

context, alluding to a trade-off between internal validity and external validity. Pritchett and

Sandefur (2015) also focused on this trade-off in the case of microcredit and quantified it using

the root mean squared error of the treatment effects. This paper is different in that evidence

used in the two extrapolations is internally valid as it comes from experimental data. Instead, I

compare the external validity of the evidence and demonstrate the usefulness of the evidence

about an adjacent policy.

This paper also makes methodological contributions to two strands of literature. First, it

presents another application to the literature on structural models estimated with RCTs (Todd

and Wolpin, 2006; Attanasio et al., 2012; Duflo et al., 2012). Those papers used randomized

treatment assignment to evaluate the fitness of their models or to identify experiment-specific

models. This paper deviates from them by using RCTs to identify a general model that is

applicable to any cash transfers intended to improve school enrollment. This flexibility allows

me to estimate an identical model with the three interventions under consideration and compare

estimated parameters across the interventions to highlight the sources of prediction differences
6Several papers scrutinized extrapolation in different directions. Banerjee et al. (2017) summarized difficulties

in extrapolation from local contexts to global ones. DellaVigna and Linos (2022) compared nudge experiments
conducted by academic researchers with those by non-academic institutions.
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in the two extrapolations.

Second, this paper builds on recent developments in the literature about dynamic discrete

choice models. The literature on dynamic discrete choice models started from Rust (1987) and

has developed new estimation methods that ease computational burdens by avoiding solving full

models (Hotz and Miller, 1993; Hotz et al., 1994; Aguirregabiria and Mira, 2002; Arcidiacono

and Ellickson, 2011; Arcidiacono and Miller, 2011). Recently, Scott (2014) introduced a new

estimation method emphasizing identification, which was later formalized by Kalouptsidi et al.

(2021). I take this approach to discuss the causal identification of my model, and to relax

rational expectations assumption by leveraging randomized treatment assignment. Relaxing

this assumption makes my model more realistic, especially because low-income households in

developing countries may have biased perceptions of returns to schooling due to information

frictions (for example, Jensen 2010). Finally, among a few papers using this identification

strategy, such as De Groote and Verboven (2019); Diamond et al. (2019); Traiberman (2019), my

paper is the first application to schooling decisions. Since human capital investment decisions

are a prevalent topic analyzed with dynamic discrete choice models, my paper will serve as a

benchmark that achieves a new identification for numerous subsequent papers on this topic.

The remainder of the paper is structured as follows. Section 2 briefly describes the Malawi

and Moroccan experiments. Section 3 introduces extrapolation methods. Section 4 shows

estimation results. Section 5 presents extrapolation results. Section 6 concludes.

2 Two Cash Transfer Experiments

2.1 Malawi experiment

Baird et al. (2011) implemented a cash transfer experiment in 176 subdistricts (enumeration

areas or EAs) of Zomba district in Malawi. The experiment offered two types of cash transfers,

conditional or unconditional on regular school attendance (CCTs and UCTs, respectively).7 The

aim of the study was to investigate the effects of the conditionality attached to cash transfers

on schooling. The target population of the experiment was the never-married girls of aged 13

to 22 at school who were at risk of dropping out of secondary school due to pregnancy or early

marriage, or both. The authors sampled 16.5 school girls per EA on average and had 2087
7The conditionality of the CCTs was to attend more than 80 percent of schooling days. Cash transfers were

made monthly if children satisfied this requirement in the previous month.
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school girls in total for analysis. They conducted three surveys: a baseline survey between

October 2007 and January 2008, the first follow-up survey between October 2008 and February

2009, and an endline survey between February and June 2010.

The randomization for the interventions was conducted at the EA level. Out of 176 EAs, 46

EAs were in the CCTs arm (470 girls), 27 EAs in the UCTs arm (261 girls), and 88 EAs in the

control arm (1356 girls). Fifteen EAs to examine spillover effects were dropped in their analysis.

Cash transfers were offered at both household and individual levels. The household amount

varied across the EAs while the individual amount did within the EAs. To benchmark the size

of the transfers, based on the authors’ calculation, the household amount for 10 months was on

average about 10 percent of the average household annual consumption expenditures. Cash

transfers were distributed every month for two years (2008 and 2009).

The main empirical results in Baird et al. (2011) showed that students who received CCTs

were 4.5 percent (or 4.1 percentage points) more likely to stay in school than those in the control

group after 1 year, and 7.9 percent (or 6.1 percentage points) more likely after 2 years, based on

self-reported school enrollment in the household surveys. The authors also estimated the effects

of UCTs, but found that the effects were biased by misreporting. When using teacher-reported

school enrollment as an outcome, the effects of UCTs were not statistically different from 0

while the effects of CCTs remained largely unchanged.

Since the misreporting bias observed in the UCTs arm was not observed in the Moroccan

experiment, the underlying mechanisms behind the effects of UCTs on self-reported school

enrollment rates may not be generalizable across policies and contexts. As a result, for the

following extrapolation exercise, I only use the treatment and the control groups in the CCT

arm from the Malawi experiment.

2.2 Moroccan experiment

Benhassine et al. (2015) conducted a cash transfer experiment covering 600 poorest rural

municipalities in the 5 poorest regions of Morocco. This experiment also had two treatment

arms, CCTs and labeled cash transfers (LCTs).8 Unlike the CCTs, the LCTs were not tied to

regular school attendance. However, like the CCTs, the LCTs were perceived as an education

program because children were registered for the experiment at schools in their residential areas

and because the program was introduced by the Ministry of Education, both of which implicitly
8The conditionality of the CCTs was not to miss school more than 4 times every month.
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encouraged school enrollment. The authors investigated whether these nudging effects were

sufficient to alter schooling decisions. The target population was children aged 6 to 15 who were

at risk of dropping out of primary school. At each school, the authors sampled 8 households

that had at least one child in that school over past three years, resulting in 4385 households in

total. They conducted a baseline survey in June 2008 and an endline survey in June 2010.

The randomization for the interventions was conducted at the school area level. Out of

320 school areas, 260 were assigned to the treatment group and 60 to the control group. The

treatment group was further divided into 4 subgroups based on whether the cash transfers were

the CCTs or the LCTs and whether the recipient was a father or mother. Since the gender

of the recipients is not the focus of my analysis, I pool the subgroups and create the CCTs

and LCTs treatment groups. The average monthly transfer amount was about 5 percent of the

average monthly household consumption. Thus, the average transfer size was, roughly speaking,

smaller than in the Malawi experiment. The cash transfers were made every 3 or 4 months

through 2009 and 2010.

The main empirical findings in Benhassine et al. (2015) showed that the LCTs increased

school enrollment for the treatment group by approximately 10 percent (or 7.4 percentage

points) compared to the control group after 2 years. In contrast, the CCTs increased enrollment

by roughly 7.3 percent (or 5.4 percentage points). Thus, the LCTs were found to be more

effective in increasing enrollment rates than the CCTs. The authors suggested two reasons

for the similar effect size of the two interventions. First, there was confusion among parents

about the conditionality of the CCTs. Specifically, less than 15 percent of the parents of the

treated children under the CCTs believed that the cash transfers were conditional on some

attendance measures, which made the CCTs functionally similar to the LCTs. Second, both

interventions had the signaling effect that education was important through the endorsement of

the program by the government. The authors then suggested that in addition to these factors,

the LCTs induced schooling among marginal children who were not confident about regular

school attendance so that they would not choose schooling under the CCTs, making the LCTs

relatively more effective.

3 Extrapolation Methods

3.1 Reduced-form approaches for across-contexts extrapolation
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3.1.1 Covariates selection

I choose two standard approaches for the across-contexts extrapolation: the heterogeneous

treatment effects approach and the propensity score weighting. The key assumption for these

approaches to be able to transfer treatment effect estimates across contexts is that potential

outcomes are independent of contexts conditional on a set of observables (Hotz et al., 2005).

To satisfy this assumption in my research setting, I first choose children’s age and gender for

the conditioning variables as the target populations in the two experiments differ in these

dimensions. Additionally, motivated by my structural model below, I also include pre-treatment

variables that are likely to affect schooling decisions; years of education, per-capita income,

school costs, and the cash transfer amount. If the assumption holds, then conditional on those

variables, the treatment effect of the Malawi CCTs should coincide with that of the Moroccan

CCTs.9

To test the robustness of the way of selecting the conditioning variables, I also employ a

data-driven approach. Specifically, I use the causal forest algorithm proposed by Wager and

Athey (2018) with all of the covariates that are available for both interventions. The causal

forest algorithm then estimates average treatment effects for various subsamples to identify

variables that moderate the treatment effect. More details about this approach are provided in

Appendix B.

3.1.2 Heterogeneous treatment effects approach

A common approach to extrapolate across contexts is the heterogeneous treatment effects

approach. I first estimate heterogeneous treatment effects based on the pre-selected covariates,

denoted by Wi = (wi1, . . . ,wiK)′ , using the second round of the Malawi CCTs’ data:

di =W ′iβ
HTE +βHTE

0 Treatmenti+
K∑
k=1

γHTE
k Treatmenti×wik +ωi,

where di is a dummy variable taking 1 if the child i enrolls in school and 0 otherwise.

With the estimated parameters, school enrollment decisions are predicted for the Moroccan

CCTs’ sample, denoted by d̃i. In order to make the predicted values lie between 0 and 1, I
9Another standard approach is entropy balancing, where sampling weights for the training data are computed

to match key moments of selected covariates in the target data (Hainmueller, 2012). Allcott (2015) used this
approach in addition to the heterogeneous treatment effects one. One problem with entropy balancing is that
the computation of the weights may not converge, which is the case in my data with those variables.
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assume that ωi is a logit error so that d̃i is the predicted logit probability of schooling for

individual i. Then the treatment effect is predicted by regressing them on treatment assignment

and sampling strata fixed effects:

d̃i = αHTE
0 +αHTE

1 Treatmenti+Stratumi+νHTE
i .

The standard errors are clustered at the randomization units.

3.1.3 Propensity score weighting

Another common approach is propensity score weighting (Stuart et al., 2011). This approach

first pools the Malawi CCTs’ and Moroccan CCTs’ second-round data and estimates the

probabilities of being in the Malawi CCTs’ sample as a function of the selected covariates:

1{i ∈Malawi CCTs}=W ′iβ
PSW +βPSW

0 Treatmenti+ui.

I assume that ui is a logit error.

Then, using the Malawi CCTs’ sample weighted by the inverse of the propensity scores, I

estimate the predicted treatment effect by regressing school enrollment decisions on treatment

assignment and sampling strata fixed effects:

di = αPSW
0 +αPSW

1 Treatmenti+Stratumi+νPSW
i .

The standard errors are clustered at the randomization units.

3.2 Structural approach for across-policies extrapolation

3.2.1 Dynamic model of schooling decisions

To extrapolate across the policies, I use a structural model that describes schooling decisions

under the CCTs and the LCTs. The purpose of the model is to replicate the effects of the CCTs

on school enrollment from those of the LCTs. The effects of the CCTs can be decomposed

into the income effect, the substitution effect, and non-pecuniary effects such as the signaling

effect highlighted in Section 2.2. While the effects of the LCTs are not informative about the

substitution effect, which creates prediction errors in the across-policies extrapolation, the
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model estimated under the LCTs can recover the other effects.

I construct a dynamic discrete choice model where a child i of school age (or a household i

with a school-age child) decides whether to go to school (d= 1) or not (d= 0) in each period t.

If the child chooses schooling, then they pay school costs s out of their per-capita income y,

accumulate one year of education, and consume the rest of the income. If the child chooses not

to attend school, then they consume all of their income. I define the school costs as payments

for tuition fees, textbooks, uniforms, and any other necessary goods, which can vary by the level

of education. Unlike life-cycle models, the income is determined outside the model, although I

treat it as potentially endogenous when estimating the model. The model is dynamic because

at the terminal period (t= T ) , the child receives lump-sum returns to education based on the

years of education e they have had, which creates an inter-temporal trade-off of consumption.10

The child maximizes the discounted sum of utilities by making a series of schooling decisions.

Formally, the maximization problem is defined as follows:

max
{diτ}T−1

τ=t

E

T−1∑
τ=t

βτ−t {θ ln(ciτ ) + εiτ (diτ )}+βT−tR
(
ei,T ;siT ,yiT

)
|eiτ ,yiτ , siτ , εiτ


s.t. ciτ = yiτ −diτsiτ , eiτ = ei,τ−1 +di,τ−1 ∀τ

where β is a discount factor, c is total consumption, and ε(d) is a choice-specific preference

shock. The model parameters to estimate are θ, the marginal utility of consumption at a given

consumption level, and R (e;y,s) , (perceived) lump-sum returns to education the child receives

at the terminal period.11 The returns to education are indexed by (y,s) as I can allow them to

vary by the state values.

For future convenience, I rewrite this problem for t < T using the Bellman equation:

V (eit,xit, εit) = max
d

θ ln(yit−dsit) + εit (d) +βEε,x [V (ei,t+1,xi,t+1, εi,t+1) |eit,xit, εit (d) ,d] ,

where xit = (yit, sit)′ . The state variables in this model are (e,x,ε) , where an econometrician

can observe (e,x) while the child can observe (e,x,ε) .

10I assume the child does not save. This is consistent with low rates of having any saving technologies in both
contexts at baseline.

11I call R (e;y,s) perceived returns to education to distinguish from actual returns to education, which I
cannot estimate with my data.
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3.2.2 Identification of model parameters

To identify θ and R (e;x), I make parametric assumptions on the preference shocks and the

discount factor.

Assumption 1. The state transition function satisfies conditional independence:

F (xt+1, εt+1|et,xt, εt,dt) = F (yt+1, εt+1|et,xt, εt,dt)

= Fε (εt+1)Fy (yt+1|yt) .

Assumption 2. εit (d) is i.i.d across (i, t,d) and follows the type-I extreme value distribution.

Assumption 3. β is set at 0.95 exogenously.

Assumption 1 makes the preference shocks serially uncorrelated and independent of the

observed state variables. This means that the preference shocks are no longer a state variable.

Assumption 2 gives me convenient expressions for some objects that appear later in my

identification arguments.12 Finally, Assumption 3 sets the discount factor outside the model as

it is generally not identified in standard dynamic discrete choice models (Rust, 1994; Magnac

and Thesmar, 2002).

With these assumptions, I begin with identifying θ via the Euler Equations in Conditional

Choice Probabilities (ECCP) approach (Scott, 2014; Kalouptsidi et al., 2021). The ECCP

approach combines the Hotz-Miller inversion with the finite dependence property to eliminate

continuation values and derive a linear equation to identify θ. A key identification challenge via

the ECCP approach is that errors in future expectations are correlated with state variables,

which is usually addressed by assuming rational expectations. I deal with it instead by exploiting

randomized treatment assignments. Since children or households in my context may have biased

beliefs about returns to education, relaxing the rational expectations assumption makes my

model more realistic.

To derive the linear equation for θ, I first define several objects for notational convenience.

The ex-ante value function is the value function integrated over the preference shocks:

V (eit,xit : θ)≡ Eε [V (eit,xit, εit : θ) |eit,xit] .

12Note that the essential part of Assumption 2 is that an econometrician knows the distribution of the
preference shocks. Thus, the following argument will hold as long as the preference shocks are drawn from a
known distribution, although its exposition may be different.

14



The conditional value function is defined with the ex-ante value function and Assumption 1:

v (eit,xit,d : θ)≡ θ ln(yit−dsit) +βEx
[
V (ei,t+1,xi,t+1 : θ) |eit,xit,d

]
.

The conditional choice probability takes a logit form because of Assumption 2

P (d= 1|eit,xit : θ) = exp(v (eit,xit,1 : θ))
exp(v (eit,xit,0 : θ)) + exp(v (eit,xit,1 : θ)) .

Finally, Assumption 2 provides a simplified expression for the ex-ante value function:

V (eit,xit : θ) = ln
∑
d

exp(v (eit,xit,d : θ)) +γ

= v (eit,xit,0 : θ) +γ− lnP (d= 0|eit,xit : θ)

= v (eit,xit,1 : θ) +γ− lnP (d= 1|eit,xit : θ) ,

where γ is the Euler’s constant. In what follows, I drop θ inside these objects for notational

simplicity.

My identification argument starts with the Hotz-Miller inversion:

ln P (d= 1|eit,xit)
P (d= 0|eit,xit)

= v (eit,xit,1)−v (eit,xit,0) . (1)

The next step is to decompose the ex-ante value functions into the realized value functions and

the residuals: for each d ∈ {0,1} ,

v (eit,xit,d) = θ ln(yit−dsit) +β
(
V (ei,t+1,xi,t+1) +ηit (d)

)
,

where

ηit (d)≡ Ex
[
V (ei,t+1,xi,t+1) |eit,xit,d

]
−V (ei,t+1,xi,t+1) .

ηit (d) is called expectation errors (Scott, 2014; Kalouptsidi et al., 2021). As I discuss later, the

expectation errors cause endogeneity problems.

Then I use the finite dependence property (Arcidiacono and Miller, 2011). In my model,

for a given level of education in period t, two sequences of choices, (dit,di,t+1) = {(1,0) ,(0,1)} ,

lead to ei,t+2 = eit+ 1. Based on this idea, I rewrite the ex-ante value functions in the following
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way: if the child chooses schooling in period t,

V (ei,t+1,xi,t+1) = v (eit+ 1,xi,t+1,0) +γ− lnP (d= 0|eit+ 1,xi,t+1) ,

and similarly, if the child chooses non-schooling,

V (ei,t+1,xi,t+1) = v (eit,xi,t+1,1) +γ− lnP (d= 1|eit,xi,t+1) .

Notice that this procedure eliminates the continuation values in period t+ 1 when subtracting

one from the other. To see this, I expand the conditional value functions in the above expressions:

v (eit+ 1,xi,t+1,0) = θ ln(yi,t+1) +βEx
[
V (eit+ 1,xi,t+2) |xi,t+1

]
,

v (eit,xi,t+1,1) = θ ln(yi,t+1− s(eit)) +βEx
[
V (eit+ 1,xi,t+2) |xi,t+1

]
.

Thus, both conditional value functions have the same continuation values.

Finally, by substituting back all of the derived expressions into the Hotz-Miller inversion in

Equation (1), I obtain a regression equation to identify θ :

ln P (d= 1|eit,yit, s(eit))
P (d= 0|eit,yit, s(eit))

= θ{ln(yit− s(eit))− ln(yit)}

+βθ{ln(yi,t+1)− ln(yi,t+1− s(eit))}

+β ln P (d= 1|eit,yi,t+1, s(eit))
P (d= 0|eit+ 1,yi,t+1, s(eit+ 1))

+β (ηit (1)−ηit (0)) .

To tidy the equation, I define several choice probabilities:

P 1
it ≡ P (d= 1|eit,yit, s(eit)) ,

P 2
i,t+1 ≡ P (d= 1|eit,yi,t+1, s(eit)) ,

P 3
i,t+1 ≡ P (d= 1|eit+ 1,yi,t+1, s(eit+ 1)) .

I rewrite the equation using these expressions:

ln P 1
it

1−P 1
it

−β ln
P 2
i,t+1

1−P 3
i,t+1

= θ

{
ln
(

1− s(eit)
yit

)
−β ln

(
1− s(eit)

yi,t+1

)}
+β (ηit (1)−ηit (0)) . (2)
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Assuming that I can construct the dependent variable, running an OLS regression on this

equation does not provide a consistent estimator of θ as
(
s(eit)
yit

, s(eit)yi,t+1

)
are correlated with

ηit (1)− ηit (0) . To see this, I decompose the expectation errors into two parts. First, there

is heterogeneity in perceived returns to education across households. For example, high- and

low-income households may have systematically different expectations about future returns

to education at baseline because of information frictions. The other part is forecasting errors,

meaning that if income is higher than expected, then the forecasting errors are also larger, even

when all households have the same perceived returns to education.

I argue that the randomized treatment assignment of the Moroccan LCTs serves as an IV

to resolve this endogeneity problem.13 The relevance condition is likely satisfied because the

cash transfers are a part of household income. The exclusion restriction for the heterogeneous

perceived returns to education requires that the treatment assignment should be orthogonal to

households’ future expectations at baseline. This would hold true because the randomization

did not allow households to select their treatment status based on their beliefs about returns to

education and because the history of schooling decisions is not a state variable.14 The second

reason is particularly important as it allows me to associate differences in the choice probabilities

across the paths within individuals with the treatment assignment, holding the perceived returns

to education constant for each individual. Therefore, I can identify θ separately from R (e;x).

The treatment assignment also satisfies the exclusion restriction with respect to the forecasting

error as the randomization guarantees that households in the treatment and the control groups,

on average, make equally inaccurate predictions about future value functions at baseline.15

Importantly, I can make the above arguments under any cash transfer interventions under

consideration. In my model, the CCTs exogenously shift the independent variable through the

school costs while the LCTs through the income. Thus, all cash transfers can serve as IVs to

identify θ consistently. Moreover, this difference in how the cash transfers work in my model

leads to different estimates of θ across the interventions, even if the amount of the cash transfers
13The cash transfer amount can also serve as an IV. However, I choose the treatment assignment to account

for the nonlinear effects of cash transfers on school enrollment rates.
14The second point allows me to assume that the cash transfers affect schooling decisions only through changes

in the flow budget constraints in my identification argument.
15To argue this point in detail, suppose that the treatment assignment is yet to be announced. Then, if

households believe they are in the treatment group and are assigned to the treatment group, they make no
forecasting errors. If they are, in contrast, assigned to the control group, then they overestimate their income.
Similar reasoning can be made when they believe they are in the control group. If the randomization makes
them believe they are assigned to a certain group by chance, then the forecasting error would be balanced across
the treatment status.
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is the same, due to the substitution effect of the CCTs. In the model, this corresponds to the

fact that the CCTs make larger relative changes in the school costs than the LCTs do in the

income. Thus, the variation in estimates of θ across the interventions reflects the differences in

policy characteristics with respect to their effects through the budget constraints.

After identifying θ, I proceed to identify the perceived returns to education, R (e;x) . Since the

identification of this object requires a functional form assumption, I choose to nonparametrically

identify differential perceived returns to education across the choices. The identification of the

differential returns depends on the terminal period as they are the terminal payoffs in my model.

I set the terminal period at T = 3, one period after households receive the cash transfers mainly

because of the lack of data on when children usually enter labor markets in both contexts,

which could be another candidate for the terminal period.

By setting T = 3, I can take a shortcut because I can use Equation (1) at t= 2 :

ln
P 1
i,2

1−P 1
i,2

= θ ln
(

1− s(ei,2)
yi,2

)
+β∆R (ei,2;xi,2) , (3)

∆R (ei,2;xi,2)≡R (ei,2 + 1;xi,2)−R (ei,2;xi,2) .

∆R (ei,2;xi,2) represents the differential perceived returns to education or the perceived relative

returns to schooling, for children with ei,2 years of education. Intuitively, this parameter is

identified through the residual variation of schooling decisions that is not explained by changes

in the relative utility of schooling due to the cash transfers. The parameter varies across the

state values because the choice probabilities are a function of the state variables.

My identification argument suggests that θ should differ across the types of the cash transfers

while ∆R (ei,2;xi,2) should be similar between them. This is because θ summarizes how the cash

transfers relax the flow budget constraints to induce schooling, which is theoretically different

between the LCTs and the CCTs. In other words, the model cannot perfectly replicate the

effects of the CCTs on the budget constraints from the LCTs, unless the substitution effect of the

CCTs is absent. This is the source of prediction errors in the across-policies extrapolation, as θ

is assumed to be the same in the extrapolation. On the other hand, ∆R (ei,2;xi,2) captures any

deviations from that standard mechanism, such as the psychological effect of the cash transfers.16

16To see this point more clearly, suppose that children who receive the CCTs or the LCTs choose schooling
completely because of non-pecuniary effects. Then, theoretically, their subsidized school costs or complemented
income should not explain schooling decisions at all, and hence the probability of schooling and the flow budget
constraint in Equation (2) become uncorrelated, leading to θ being 0. Then, the probability of schooling is equal
to ∆R (ei,2;xi,2).
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While the model is agnostic about such neoclassical mechanisms reflected in this parameter, it

may be reasonable to assume that they are common between the two interventions when doing

the across-policies extrapolation, as these mechanisms are likely to be context-dependent. In

summary, the two parameters can be regarded as representing competing mechanisms through

which the cash transfers affect schooling.

3.2.3 Two-step estimation

To operationalize the identification arguments, I estimate my model in two steps. The first step

is to estimate the choice probabilities from my data. This can be done nonparametrically if data

have sufficient variation in each state, which is not the case with my data. Therefore, I estimate

the choice probabilities with a flexible logit of the state variables to smooth the probabilities

across the state space.17 After obtaining the estimates of the choice probabilities, I run a 2SLS

estimation on Equation (2) to estimate θ. Finally, I recover ∆R (e;x) from Equation (3) with

the estimates of the choice probabilities and θ.

In the choice probabilities estimation, I select an estimation method that can replicate

the treatment effect of the Moroccan LCTs with the estimates of the choice probabilities.

Specifically, I first estimate the choice probabilities with the flexible logit of the state variables

via MLE. Then I compute the shares of children choosing schooling for the treatment and the

control groups in each survey round and compare them with the true shares. To replicate the

treatment effect using my model, these shares need to be sufficiently close to each other, given

the effect size of the Moroccan LCTs. If the MLE estimates of the choice probabilities do not

meet this criterion, then I estimate the choice probabilities using the same logit but via GMM,

where I directly match those shares as the moment conditions. While the GMM estimator

might distort the individual choice probabilities to match the shares, in Appendix D, I provide

evidence that an estimated model using the GMM estimates can accurately simulate individual

schooling decisions. More details about the choice probabilities estimation are available in

Appendix C.

17Another common way of smoothing the choice probabilities is to weight nonparametric estimates across
states. One advantage of my smoothing approach is that I do not have to discretize my state space. My approach
is used, for example, in a numerical example provided in Arcidiacono and Miller (2011).
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3.2.4 Prediction

Having obtained the estimates of θ and ∆R (e;x) under the Moroccan LCTs, the prediction of

the treatment effect of the Moroccan CCTs is made by using (ei,2,yi,2, si,2) from the Moroccan

CCTs. I first predict the choice probabilities denoted with a tilde:

P̃ (d= 1|ei,2,yi,2, si,2) =
exp

(
θLCTs ln

(
1− si,2

yi,2

)
+β∆RLCTs (ei,2 : xi,2)

)
1 + exp

(
θLCTs ln

(
1− si,2

yi,2

)
+β∆RLCTs (ei,2 : xi,2)

) ,

Using them as the dependent variable, I then run an OLS regression:

P̃ (d= 1|ei,2,yi,2, si,2) = δ1 + δ2Treatmenti+Stratumi+νi, (4)

where δ1 and δ2 represent the predicted control group’s school enrollment rate and treatment

effect, respectively.

It is worth noting that extrapolating ∆R (e;x) is not straightforward as the state space may

not overlap across the two interventions. For example, school costs for the treated children

under the Moroccan CCTs can be negative if the transfers cover more than the actual costs while

they are always positive under the Moroccan LCTs. Thus, I need to extrapolate ∆R (e;x) for

the Moroccan CCTs’ children from the empirical distribution of ∆R (e;x) under the Moroccan

LCTs. To do this, I take both parametric and nonparametric approaches. The parametric

approach constructs a linear projection of ∆R (e;x) on
(
e,e2

)
. The nonparametric approach

uses the Random Forest algorithm to capture the relationship between ∆R (e;x) and e. In what

follows, I present results for both approaches for robustness.

4 Estimation Results

4.1 Data

My main dataset is constructed from the publicly available data of the Malawi and Moroccan

experiments (Baird et al., 2012; Ozler et al., 2015a,b; Benhassine et al., 2019).18 I use a baseline,
18The Malawi data are published at Microdata Library of The World Bank. For instance, the link to

the baseline survey is here: https://microdata.worldbank.org/index.php/catalog/1005. The Moroccan
data are available at OPEN ICPSR: https://www.openicpsr.org/openicpsr/project/114579/version/V1/
view?path=/openicpsr/114579/fcr:versions/V1&type=project.
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the first follow-up, and an endline surveys from the Malawi data and a baseline and an endline

surveys from the Moroccan data. The subscript t in my notation corresponds to a survey round.

Next, I construct the key variables; schooling decisions, years of education, per-capita

income, school costs, and cash transfers from the household surveys. The schooling decisions are

determined based on whether an individual is currently enrolled in school, which I observe in

the data. The years of education can be constructed based on the current grades that children

are in. However, due to reporting errors such as an increase of 2 years between survey rounds, I

construct years of education from schooling decisions and years of education at baseline as the

model describes (ei,t+1 = eit+dit) . The resulting years of education are highly correlated with

the reported grades, validating this construction.19 The cash transfer amount is also observed

in the data. I convert it into an annual term by multiplying the monthly amount by 10, the

number of months schools are open in a year. For children in the control group, I impute 0 for

their cash transfer amount.

Since children’s income is not measured in both experiments, I use an adjusted per-capita

household expenditure to construct the per-capita income as a proxy. I first construct annual

household expenditures by multiplying them by 12 monthly household expenditures of the

month prior to the surveys. Second, I subtract the amount of the cash transfers from the annual

expenditures.20 Then I divide the resulting expenditures by the household size adjusted by

the OECD equivalence scale, where the household head’s consumption is twice as much as a

child’s consumption and each of the other adult members’ consumption is 1.4 times as much.

Finally, if a child is in the LCTs treatment group, I add the cash transfers to the per-capita

expenditures. This assumes the cash transfers are all consumed by the eligible child in my

model. Because the CCTs were provided to cover school costs, I assume that cash transfers are

spent entirely for the child even if not used for schooling.

The school costs are constructed from annual individual school expenditures reported by

children in the control group who were enrolled in school. I create a menu of the school costs by
19Constructing years of education in this way is not straightforward in the Moroccan data as the household

surveys were conducted 2 years apart. In the data, differences in years of education between the surveys vary
from 0 to 2, which requires choosing whether in my model years of education increase by 1 or 2 if children
choose schooling. I assume that years of education increase by 1 at endline if schooling is chosen at baseline.
While the resulting years of education show a high correlation with the reported grades, this assumption may
not be innocuous because the amount of the cash transfers is increasing in grades. Thus, not only does the
average years of education become lower, but the size of the cash transfers relative to the per-capita income or
the school costs becomes smaller.

20If children are in the LCTs treatment group, I subtract the cash transfers for everyone. If children are in
the CCTs treatment group, I subtract only for those choosing schooling.
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taking the median of the school expenditures for each grade, weighted by sampling weights.21 A

concern is that the school expenditures might include private investment in children’s education,

which would create variation in the school expenditures by households’ income levels. If the

cross-sectional variation is large, then the same school costs for all children in the same grades

are not a reasonable assumption. Figure G.1 in Appendix G shows that the distributions of

the individual school expenditures are skewed for all grades, alleviating this concern.22 Finally,

I subtract the cash transfer amount from the resulting school costs for children in the CCTs

treatment group.

A few more remarks about the construction of the variables are in order. First, I measure the

income and the school costs in 100 USD in 2008 to keep the same units across the experiments.

One USD in 2008 was 140 Malawian Kwacha and 7.75 Moroccan Dirham.23 Second, I remove

observations who were in the final grade of secondary school in the Malawi data and primary

school in the Moroccan data at baseline as their school costs when they choose schooling at

baseline are not available. Third, I make balanced panel data for each experiment with no

missing values in any of the variables I created above.

I show the summary statistics of the created variables in Table 1 to check whether they

are balanced at baseline for each experiment. Within each context, these variables are jointly

balanced at baseline. Across the contexts, there are several notable differences. First, the

average years of education are higher in the Malawi experiment than in the Moroccan experiment

because of the differences in the targeting populations. That is, the Malawi sample comprises

only girls who were about to enter secondary school and is thus on average older than the

Moroccan sample. For the same reason, the gender ratio and children’s age differ between the

experiments. These demographic differences result in different reasons for school dropout, as

illustrated in Figure 1. Specifically, while the Malawi girls quit school mainly due to pregnancy or

marriage, the Moroccan children dropped out for various reasons such as poor school quality and

domestic work. Second, the income and the school costs are on average higher in the Moroccan

experiment, reflecting the fact that Morocco had a higher GDP per capita than Malawi in

2008.24 Third, while the average cash transfer amount is similar across the experiments, its
21I pool children in grades 1 to 6 in the Malawi data because of a small number of observations in those

grades. Thus, children in those grades face the same school costs.
22Because there are outliers in the reported school expenditures, I use the median instead of the mean.
23The conversion rates are from The World Bank data: https://data.worldbank.org/indicator/PA.NUS.

FCRF?end=2021&locations=MA-MW&start=1960.
24According to the World Bank data, the GDP per capita (in PPP) in 2008 was $1287 for Malawi and $5890

for Morocco: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?end=2010&locations=MA-MW&
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relative size to the income or school costs differs. The relative size of the cash transfers is larger

in the Malawi experiment.

Table 1: Summary statistics of key variables at baseline

Malawi Morocco
(1) (2) (3) (4) (5)

Control CCTs Control CCTs LCTs
= 1 if enrollment 1.000 1.000 0.909 0.921 0.920∗
Years of education 8.046 7.960 2.755 2.776∗ 2.764
Per-capita income (in 100 USD) 1.173 1.571 5.368 5.335 5.345
School costs (in 100 USD) 0.123 0.124 0.213 0.212 0.212
Cash transfers (in 100 USD) NA 1.006 NA 1.054 1.057
=1 if girls 1.000 1.000 0.448 0.471∗ 0.486∗∗
Age 14.964 14.740 9.889 9.910 9.912
Obs. 1145 412 1276 3706 1740
Joint F-test 0.153 0.250 0.106

Note: Standard errors are clustered at randomization units. Sampling strata fixed effects are
included in all regressions. Observations are weighted by sampling weights. The cash transfer
amount is taken from the second round of household survey. The stars indicate t-tests on whether
the treatment and control groups are different on average. Joint F-test reports the p-values from
F-tests on whether the variables in the table except for the cash transfer amount are balanced
across the groups jointly.
*** p<0.01 ** p<0.05 * p<0.1

Finally, I report the Intention-To-Treat effects of each intervention on the school enrollment

rates in my data. The effects are estimated by a reduced-form regression that is similar to the

specifications used in Baird et al. (2011); Benhassine et al. (2015). I use the second round of the

household surveys and regress the schooling decisions on a dummy variable for the treatment

group and sampling strata fixed effects:

di,2 = α1 +α2Treatmenti+Stratumi+νi. (5)

The estimation results in Table 2 are aligned with the original results reported in the two

papers. In my samples, the Malawi CCTs increased the school enrollment rate of the treatment

group by 3.7 percentage points (or 4.1 percent). In contrast, the Moroccan CCTs increased it by

5.7 percentage points (or 6.4 percent), and the Moroccan LCTs did so by 7.3 percentage points

(or 8.2 percent). As I mentioned in Section 2, the original estimates of the treatment effects

varied from 4 to 7 percentage points. Moreover, in the Moroccan experiment, the estimates were

higher under LCTs than CCTs. Therefore, although I made different sample restrictions, the

start=2000.
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Figure 1: Primary reasons for school dropout

(a) Malawi CCTs’ sample
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(b) Moroccan CCTs’ sample
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Note: I use the samples in the first and second rounds of household surveys to create these graphs. Financial
reasons are no money for school-related fees. Health related reasons are such as illnesses and disabilities. School
related reasons include poor school infrastructure, poor quality of teaching, and bad access to school. The total
of the bars in the graphs may not be 100 due to observations with the missing primary reasons.

estimated effects with my samples are able to capture these features. In the following analysis,

I evaluate extrapolation results based on my estimated treatment effect and enrollment rate of

the control group in Column (2) of Table 2.

Table 2: Estimates of ITT effect on school enrollment rates

Malawi Morocco
(1) (2) (3)

CCTs CCTs LCTs
Treatment 0.0369∗ 0.0567∗∗∗ 0.0726∗∗∗

(0.0200) (0.0106) (0.0107)

Control mean 0.896∗∗∗ 0.894∗∗∗ 0.893∗∗∗
(0.0154) (0.00951) (0.00833)

Obs. 1490 4982 3018
Clustered standard errors (randomization units) in paren-
theses. Sampling strata fixed effects are included in all re-
gressions. Observations are weighted by sampling weights.
*** p<0.01 ** p<0.05 * p<0.1

4.2 Parameter estimates
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4.2.1 Reduced-form approaches

I show the estimated coefficients of the two reduced-form approaches in Table 3. The first

column displays the estimates of the coefficients from the heterogeneous treatment effects

approach using the logit with the Malawi CCTs’ sample. The coefficients on the interaction

terms suggest that the treatment is more effective for children with less education, higher

school costs, or in younger age cohorts at baseline. The second column presents the estimated

coefficients from the logit in the propensity score weighting. The coefficients reflect differences

in baseline characteristics across the experiments. For example, since the Malawi CCTs’ sample

was about to enter secondary school, children with more years of education receive a higher

propensity score, holding the other variables constant.

4.2.2 Structural approach

I show the estimates of θ and the empirical distributions of ∆R (e;x) under the Moroccan LCTs.

To construct the dependent variable in Equation (2), I use the GMM estimates of the choice

probabilities.25 Table 4 shows the estimate of θ. The first-stage F-statistics for weak instruments

is greater than the conventional threshold of 10, and the estimated value is statistically different

from 0 at a significance level of 0.01. To interpret the size of the parameter, I compute the

elasticity of schooling with respect to the cash transfer amount and find that the average

elasticity is 0.142. That is, a 1 percent increase in the cash transfer amount on average increases

the probability of schooling by 0.142 percent.26

The empirical distribution of ∆R (e;x) is presented in Figure 2. The estimates are mostly

positive, indicating that the perceived returns to schooling relative to outside options are

positive for the Moroccan LCTs’ sample. This is reasonable as schooling decisions under the

LCTs should be driven by the positive relative returns, as the LCTs would not differentially

affect the flow utility cost of schooling across the choices substantially. The average size of

the relative returns is slightly greater for the treatment group than the control group, which

is counterintuitive because theoretically the relative returns should be larger for children in
25The full estimation results are available in Appendix C.
26The formula to compute the elasticity is as follows:
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Table 3: Estimates of coefficients in reduced-form approaches

HTE PSW
(1) (2)

= 1 if enrollment (Logit) = 1 if in Malawi CCTs (Logit)
Treatment 12.06∗∗ 12.22∗

(5.062) (7.256)

Years of education 0.148 4.785∗∗∗
(0.235) (1.114)

Per-capita income 0.0795 -0.471∗∗
(0.222) (0.201)

School costs -0.0972 -36.06∗∗∗
(1.350) (12.72)

Cash transfers 0.775 -11.35∗
(0.770) (5.818)

Age -0.513∗∗∗ 2.677∗∗∗
(0.0660) (0.927)

Treatment × Years of education -1.007∗∗
(0.463)

Treatment × Per-capita income 0.312
(0.337)

Treatment × School costs 7.285∗∗
(3.118)

Treatment × Age -0.290∗
(0.167)

Constant 9.145∗∗∗ -60.07∗∗∗
(1.884) (17.14)

Obs. 1490 6472
Clustered standard errors (randomization units) in parentheses. HTE indicates the heterogeneous treatment
effects approach while PSW does the propensity score weighting. Observations are weighted by sampling weights
for the HTE only. The interaction between the treatment dummy and the cash transfer amount is omitted
because of collinearity with the cash transfer amount itself.
*** p<0.01 ** p<0.05 * p<0.1

26



Table 4: Estimates of θ under Moroccan LCTs

(1)
θ 38.90∗∗∗

(11.30)
Obs. 3016
1st stage F statistics 25.483
CCP estimation GMM

Note: Clustered standard errors (ran-
domization units) in parentheses. Ob-
servations are weighted by sampling
weights. I report the Kleibergen-Paap
F statistics for weak identification.
*** p<0.01 ** p<0.05 * p<0.1

the control group as their school enrollment is entirely due to the positive relative returns.

Thus, the fact that the relative returns are estimated greater for the treatment group indicates

that the LCTs impacted the relative returns directly. This can be interpreted as the signaling

mechanism highlighted in Benhassine et al. (2015). That is, the LCTs increased enrollment

partly because they were perceived as the signal that education was important for children’s

future.

Figure 2: Empirical distributions of ∆R (e;x) under Moroccan LCTs
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Note: The dashed lines indicate E [∆Ri (e)] for each group, weighted by sampling weights.

In Appendix D, I check the fitness of my model to the Moroccan LCTs’ data by comparing

27



the replicated treatment effect of the Moroccan LCTs with the estimated effect. I find that the

equality between the two is not rejected at a significance level of 0.05. I also find that the model

correctly simulates 89 percent of the individual schooling decisions with no systematic bias

in misprediction. These results indicate that while the model is parsimonious, it successfully

describes the schooling decisions under the Moroccan LCTs.

5 Extrapolation Results

5.1 Comparison of two extrapolations

Table 5 present the predicted effect of the Moroccan CCTs on school enrollment rates, as well as

the predicted enrollment rates of the control group. The first two columns show the results of

the across-contexts extrapolation. I find that the across-contexts extrapolation fails to predict

the treatment effect. In column (1), using the heterogeneous treatment effects approach, the

across-contexts extrapolation predicts that the Moroccan CCTs increase the enrollment rate of

the treatment group statistically significantly by 1.56 percentage points from a base of 98.4

percent. In contrast, in column (2), the propensity score weighting predicts the null treatment

effect while it predicts the enrollment rate of the control group as 89.5 percent. Both predictions

fail to yield a 95 percent confidence interval that contains the target treatment effect estimate.

As mentioned in Section 3.1.1, I also use the causal forest algorithm, which is a data-

driven way to select conditioning variables, to conduct the across-contexts extrapolation. In

Appendix B, I show that the causal forest predicts that the Moroccan CCTs increase the

school enrollment rate of the treatment group by 3.7 percentage points, which is statistically

significantly different from the target treatment effect estimate. Therefore, the across-contexts

extrapolation, regardless of using the reduced-form approaches or the data-driven approach,

mispredicts the true treatment effect numerically and statistically.

In contrast, I find that the across-policies extrapolation successfully predicts the treatment

effect. Columns (3) and (4) differ in how I extrapolate ∆R (e;x) when computing the predicted

choice probabilities. Despite the difference, the across-policies extrapolation generates similar

predictions. It predicts that the Moroccan CCTs increase the school enrollment rate of the

treatment group by 5.77 or 5.90 percentage points, which is less than 0.5 percentage points away

from the target treatment effect estimate. Furthermore, the null hypotheses on the equality

28



are not rejected at a significance level of 0.05.27 However, the across-policies extrapolation

overpredicts the enrollment rate of the control group. In Appendix F, I explain this bias in

predicting the enrollment rates with the relative size of the parameter estimates.

Table 5: Prediction of treatment effect on school enrollment rates
Across-contexts (reduced-form) vs Across-policies (structural)

Target: Morocco CCTs Across-contexts Across-policies
(1) (2) (3) (4)
HTE PSW Linear RF

Treatment 0.0156∗∗∗ 0.00660 0.0590∗∗∗ 0.0577∗∗∗
(0.000535) (0.0184) (0.00545) (0.00542)

Control mean 0.984∗∗∗ 0.895∗∗∗ 0.941∗∗∗ 0.942∗∗∗
(0.000515) (0.0128) (0.00531) (0.00529)

Obs. 4982 1490 4982 4982
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.000 0.007 0.674 0.863
95% CI of ITT [0.015, 0.017] [-0.030, 0.043] [0.048, 0.070] [0.047, 0.068]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.927 0.000 0.000
95% CI of control mean [0.983, 0.985] [0.869, 0.920] [0.931, 0.952] [0.932, 0.953]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are in-
cluded in all regressions. Observations are weighted by sampling weights. HTE indicates the heterogeneous
treatment effects approach while PSW does the propensity score weighting. Linear indicates the linear
extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does the
Random Forest algorithm on years of education. I report p-values from F-tests on the null hypothesis that
the predicted value is equal to the estimated one, separately for the treatment effect and the control mean.
*** p<0.01 ** p<0.05 * p<0.1

One might concern that the results in Table 5 are driven by the extrapolation methods. That

is, the structural approach might be better able to transfer the treatment effect estimates than

the reduced-form approaches.28 To address this concern, I do the across-contexts extrapolation

using the structural approach. This is plausible because my model is causally identified under

any type of cash transfers that shift the flow utility cost of schooling exogenously, thus it can

be applied to the Malawi CCTs (as well as to the Moroccan CCTs).

The new extrapolation results are presented in Table 6. The first two columns show the

results of the across-contexts extrapolation results using the structural approach while the last

two columns reproduce the across-policies extrapolation results from Table 5. The predicted
27Table G.1 in Appendix G shows the extrapolation results using higher order polynomials of e for the linear

projection. The results are robust to this modification.
28Fudenberg et al. (2022) defined the predictive power of economic models conditional on unpredictable

variation by any empirical methods. Using their terminology, my structural approach might be more complete
than the reduced-form approaches.
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effect is at best 4.3 percentage points from a base of 67.6 percent. Compared to the results

using the reduced-form approaches, the predicted effects are closer to the target estimate,

although the 95 percent confidence intervals still do not contain it. In terms of the predictions

of the levels, the structural approach underpredicts the school enrollment rate of the control

group by 20 percentage points, which is worse than the reduced-form approaches. Thus, the

overall performance of the across-contexts extrapolation is not necessarily improved by using the

structural approach, and the conclusion about the relative performance of the two extrapolations

remains unchanged.29

Table 6: Prediction of treatment effect on school enrollment rates
Across-contexts (structural) vs Across-policies (structural)

Target: Morocco CCTs Across-contexts Across-policies
(1) (2) (3) (4)

Linear RF Linear RF
Treatment 0.0431∗∗∗ 0.0412∗∗∗ 0.0590∗∗∗ 0.0577∗∗∗

(0.00465) (0.00644) (0.00545) (0.00542)

Control mean 0.702∗∗∗ 0.676∗∗∗ 0.941∗∗∗ 0.942∗∗∗
(0.00390) (0.00556) (0.00531) (0.00529)

Obs. 4982 4982 4982 4982
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.004 0.016 0.674 0.863
95% CI of ITT [0.034, 0.052] [0.028, 0.054] [0.048, 0.070] [0.047, 0.068]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.694, 0.710] [0.665, 0.687] [0.931, 0.952] [0.932, 0.953]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are
included in all regressions. Observations are weighted by sampling weights. Linear indicates the linear
extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does the
Random Forest algorithm on years of education. I report p-values from F-tests on the null hypothesis
that the predicted value is equal to the estimated one, separately for the treatment effect and the control
mean.
*** p<0.01 ** p<0.05 * p<0.1

5.2 Comparison of model parameters

So far, my results show that the across-policies extrapolation outperforms the across-contexts

extrapolation in predicting the treatment effect of the Moroccan CCTs on the school enrollment
29In Appendix E, I investigate whether the differential predictions across the extrapolation methods in the

across-contexts extrapolation is because the structural approach implicitly measures the school costs and the
cash transfer amount relative to the income, whereas the reduced-form approaches use them in absolute values.
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rates. To understand the sources of the differential predictions, I collapse my comparative

analysis to the comparison of the two parameters estimated in my structural model. In particular,

I estimate my model separately for each intervention, and compare the extrapolated values of θ

and ∆R (e;x) from the two interventions with the estimated values under the Moroccan CCTs.

This analysis allows me to point out which parameter is key for successful predictions.

Table 7 presents the estimates of θ under each intervention. Notably, all of the estimates are

positive and statistically significantly different from 0, and the 1st stage F-statistics are greater

than the conventional threshold. This proves that all of the interventions serve as strong IVs

to identify θ. The size of θ varies substantially across the interventions, although it is more

similar for the two CCT interventions than the two Moroccan interventions. This is because

the size depends on the extent to which the cash transfers shift the relative utility of schooling,

ln
(
y−s
y

)
, which differs across the types of the cash transfers. Therefore, the estimated θ under

the Moroccan CCTs is better approximated by the estimate under the Malawi CCTs than the

Moroccan LCTs.

Table 7: Comparison of estimates of θ across interventions

Malawi Morocco
(1) (2) (3)

CCTs CCTs LCTs
θ 1.008∗∗∗ 2.670∗∗∗ 38.90∗∗∗

(0.256) (0.454) (11.30)
Obs. 1479 4981 3016
1st stage F statistics 113.011 3843.510 25.483
CCP estimation MLE GMM GMM
= target θ 0.000 0.001

Note: Clustered standard errors (randomization units) in paren-
theses. Observations are weighted by sampling weights. I report
the Kleibergen-Paap F statistics for weak identification.
*** p<0.01 ** p<0.05 * p<0.1

Figure 3 displays the empirical distributions of ∆R (e;x) . Across all of the interventions, the

perceived relative returns to schooling are largely positive. Like the estimates of θ, the average

size of the relative returns is more comparable within the policy than within the context. This

is because the higher school enrollment rate of the treatment group under the CCTs is explained

by a larger relative utility of schooling rather than larger relative returns to schooling. In other

words, since the LCTs do not increase the relative utility as much as the CCTs do, an increase

in the enrollment rate of the treatment group under the LCTs should be driven mainly by the
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relative returns. Therefore, the average size of the relative returns is greater under the LCTs

and different from the two CCTs.

Figure 3: Comparison of empirical distributions of ∆R (e;x) across interventions
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Note: The dashed lines indicate E [∆Ri (e)] under each intervention, weighted by sampling weights.

Although the average size of ∆R (e;x) is similar within the policy, this does not imply

that the estimated ∆R (e;x) under the Moroccan CCTs is also better approximated in the

extrapolation from the Malawi CCTs, provided that the across-policies extrapolation outperforms

the across-contexts extrapolation. One explanation that reconciles these facts is that the within-

intervention variation in ∆R (e;x) across the treatment status is more similar within the same

context than within the same policy.

Table 8 shows the average relative utility
(
E [θ∆u] = E

[
θ ln

(
y−s
y

)])
and perceived relative

returns of schooling for the treatment and control groups separately for each intervention. The

average relative utility in columns (1) and (2) exhibits larger variation between the groups under

the CCTs than the LCTs, which is consistent with the reasoning behind the varying size of the

estimates of θ. On the other hand, the average relative returns in columns (3) and (4) show

similar patterns across the policies. While the average returns are smaller for the treatment

group than the control group under the Malawi CCTs, they are, if anything, greater for the

treatment group under the two Moroccan interventions. This similarity in the across-groups

variation of ∆R (e;x) reflects an advantage of the across-policies extrapolation when predicting
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the treatment effect.

Table 8: Comparison of average relative utility and returns across interventions

E [θ∆u] E [β∆Ri (e)]
(1) (2) (3) (4)

Control Treatment Control Treatment
Malawi CCTs -0.292 0.594∗∗∗ 2.526 2.373∗
Morocco CCTs -0.117 0.409∗∗∗ 3.045 3.085
Morocco LCTs -1.706 -1.390∗∗∗ 5.109 5.383∗∗∗

Note: I use the second round of the household surveys to create this table.
Standard errors are clustered at randomization units. Sampling strata
fixed effects are included in all regressions. Observations are weighted by
sampling weights. The stars indicate t-tests on whether the treatment and
control groups are different on average.
*** p<0.01 ** p<0.05 * p<0.1

To visualize the similarity in ∆R (e;x) across the policies, I examine the correlation between

the extrapolated values of ∆R (e;x) from the two interventions and the estimated values of

∆R (e;x) from the Moroccan CCTs.30 Figure 4 depicts these values plotted against years of

education of the Moroccan CCTs’ sample. The green-square line represents the estimated

values and shows a downward-sloping curve over years of education. The blue-empty-circle line

represents the extrapolated values of ∆R (e;x) from the Malawi CCTs. Unlike the estimated

values, the line exhibits an upward-sloping curve, indicating an opposite correlation between

∆R (e;x) and years of education. In contrast, the red-filled-circle line for the extrapolated values

of ∆R (e;x) from the Moroccan LCTs is parallel to the estimated values. Therefore, although

the levels are different, the across-policies extrapolation predicts the distribution of ∆R (e;x)

more accurately than the across-contexts extrapolation.

Finally, to further confirm that the poor performance of the across-contexts extrapolation

stems from ∆R (e;x), I run the across-contexts extrapolation by replacing either θ or ∆R (e;x)

with the estimated values from the Moroccan CCTs. Results in Table 9 show that the per-

formance improves only when I replace ∆R (e;x) . When replacing θ in columns (2) and (3),

the treatment effect is overpredicted while the school enrollment rate of the control group is

underpredicted similar to the prediction without the replacement. In contrast, when replacing

∆R (e;x) , while the treatment effect is similarly underpredicted as before, the underprediction of

the enrollment rate is corrected. As a result, the overall prediction accuracy is improved. There-

fore, the analysis suggests that the inaccurate predictions via the across-contexts extrapolation
30Because the performance of both extrapolations does not differ by how I extrapolate ∆R (e;x) as in Table 6,

I show subsequent results using the linear projection unless indicated otherwise.
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Figure 4: Comparison of ∆R (e;x) for Moroccan CCTs’ sample
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Note: The figure shows the bin scatter plots for the Moroccan CCTs’ sample. I use residualized values by
controlling for sampling strata fixed effects. Observations are weighted by sampling weights. I draw quadratic
fit lines.

are attributable to the extrapolation of ∆R (e;x).31

One explanation for the opposite correlation pattern in ∆R (e;x) extrapolated across the

contexts is differences in the education levels of the targeting populations across the experiments.

As seen in Figure 4, the estimated values of ∆R (e;x) for the Moroccan CCTs’ sample are

decreasing in years of education over primary education, which can be explained by increasing

opportunity costs of schooling. As children obtain more education or get older, they become

more valuable in non-schooling activities. If perceived returns to these alternative activities

increase more rapidly than perceived returns to schooling, then the perceived relative returns

to schooling would be decreasing. This implies that the more beneficial outside options are, the

more likely children choose to drop out of school.

Figure 5 presents the estimated values of ∆R (e;x) for the Malawi CCTs’ sample against
31When I do the same exercise for the across-policies extrapolation, I find that the performance becomes

worse off when replacing ∆R (e;x) than θ, which is coherent to the argument in the main text. However, I also
find that the across-policies extrapolation underpredicts the treatment effect when replacing θ. This is because if
I use the estimated value of θ, then the relative utility of schooling becomes smaller compared to the perceived
relative returns to schooling. As a result, the choice probabilities are largely dependent on the relative returns.
Since the exponential of the relative returns makes the choice probabilities close to 1 for everyone, the predicted
treatment effect becomes smaller than the estimated one. The estimation results are shown in Table G.2 in
Appendix G.
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Table 9: Across-contexts extrapolation with replacement of θ or ∆R (e;x)

Across-contexts
Linear Linear RF
(1) (2) (3) (4)

Treatment 0.0431∗∗∗ 0.0953∗∗∗ 0.0909∗∗∗ 0.0367∗∗∗
(0.00465) (0.00486) (0.00655) (0.00721)

Control mean 0.702∗∗∗ 0.688∗∗∗ 0.663∗∗∗ 0.901∗∗∗
(0.00390) (0.00411) (0.00570) (0.00689)

Obs. 4982 4982 4982 4982
Replace θ X X
Replace ∆R (e;x) X
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.004 0.000 0.000 0.006
95% CI of ITT [0.034, 0.052] [0.086, 0.105] [0.078, 0.104] [0.022, 0.051]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.276
95% CI of control mean [0.694, 0.710] [0.680, 0.696] [0.651, 0.674] [0.888, 0.915]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects
are included in all regressions. Observations are weighted by sampling weights. Linear indicates the
linear extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does
the Random Forest algorithm on years of education. Replace θ and Replace ∆R (e;x) mean I use the
estimated value of each parameter under the Moroccan CCTs. I report p-values from F-tests on the null
hypothesis that the predicted value is equal to the estimated one, separately for the treatment effect and
the control mean.
*** p<0.01 ** p<0.05 * p<0.1

years of education, which exhibit two parts: an increase up to grade 8, which is the final grade

in primary school, followed by a decrease. This means the perceived relative returns to schooling

are increasing over primary education and decreasing over secondary education for the Malawi

CCTs’ sample. The increasing relative returns suggest that perceived returns to schooling grow

faster than perceived returns to non-schooling activities, which indicates that outside options do

not appear attractive compared to schooling during that period. This conjecture is supported by

the fact that the Malawi CCTs’ sample largely completed primary education, as the experiment

targeted girls who were at risk of dropping out of secondary school. Furthermore, the tipping

point of the relative returns corresponds to when the Malawi children started choosing dropout.

When I extrapolate from the Malawi CCTs, I predict ∆R (e;x) based on the increasing part,

leading to the upward sloping curve of the extrapolated ∆R (e;x) .

Based on the above discussion, it is natural to consider that the poorer prediction of

∆R (e;x) in the across-contexts extrapolation is simply due to differences in the characteristics
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Figure 5: ∆R (e;x) on years of education: Malawi CCTs’ sample
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Note: The figure shows the bin scatter plots for the Malawi CCTs sample. I use residualized values by controlling
for sampling strata fixed effects. Observations are weighted by sampling weights. I draw a quadratic fit line.
The dashed line indicates the final grade of primary education in Malawi.

of the target populations across the experiments. To examine this possibility, I repeat the

across-contexts extrapolation by adjusting three key dimensions in which the target populations

differ; years of education, gender, and age.

First, I redo the across-contexts extrapolation with normalizing years of education, motivated

by the hypothesis that the poorer prediction of ∆R (e;x) in the across-contexts extrapolation is

simply due to the difference in the timing when children started choosing school dropout, as

suggested in Figures 4 and 5. In particular, I first recenter the years of education of the Malawi

CCTs’ sample by subtracting 7. This modification makes the Malawi children similar to the

Moroccan children in terms of the grade at which both could choose to drop out. I also drop the

Malawi children in primary education levels when predicting ∆R (e;x). This sample restriction

eliminates the upward-sloping part of ∆R (e;x) in Figure 5 and thus makes the extrapolated

values of ∆R (e;x) more comparable to the target estimates.

I present the results of the across-contexts extrapolation with the normalization in Table 10.

First, I observe that the treatment effect is still underestimated in all of the results, even more

so than without the normalization. Second, in contrast, the estimated school enrollment rates

of the control group are closer to the target estimate than without the normalization. Third,

36



the sample restriction does not improve the performance additionally, probably because it

removes only a small number of observations. Fourth, the results are robust to how I extrapolate

∆R (e;x) . These results suggest that the normalization improves the overall performance of the

across-contexts extrapolation, although it still underestimates the effect of the Moroccan CCTs.

Table 10: Across-contexts extrapolation with normalized years of education

Across-contexts
Linear RF

(1) (2) (3) (4)
Treatment 0.0150∗∗∗ 0.0147∗∗∗ 0.0188∗∗∗ 0.0189∗∗∗

(0.000788) (0.00265) (0.00215) (0.00227)

Control mean 0.903∗∗∗ 0.875∗∗∗ 0.870∗∗∗ 0.868∗∗∗
(0.000674) (0.00221) (0.00186) (0.00195)

Obs. 4982 4982 4982 4982
Normalization X X X X
Sample restriction X X
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.000 0.000 0.000 0.000
95% CI of ITT [0.013, 0.017] [0.010, 0.020] [0.015, 0.023] [0.014, 0.023]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.901, 0.904] [0.871, 0.880] [0.866, 0.873] [0.864, 0.871]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects
are included in all regressions. Observations are weighted by sampling weights. Linear indicates the
linear extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF
does the Random Forest algorithm on years of education. Normalization means the normalized years of
education are used and Sample restriction does the elimination of the Malawi sample with less than 8
years of schooling when doing extrapolation. I report p-values from F-tests on the null hypothesis that
the predicted value is equal to the estimated one, separately for the treatment effect and the control
mean.
*** p<0.01 ** p<0.05 * p<0.1

Next, I conduct subsample analyses based on children’s gender and age. It is plausible to

consider that the across-contexts extrapolation may yield more accurate predictions for a subset

of the Moroccan CCTs’ sample as the Malawi CCTs’ sample is on average older and consists

of girls only. Thus, it might be easier to extrapolate the distribution of ∆R (e;x) across the

contexts for subsamples with similar demographics. This is more likely the case if boys and girls

have differential returns to education in Morocco. Benhassine et al. (2015) provided suggestive

evidence that parental beliefs over children’s returns to education in labor markets varied across

children’s gender.

I show in Table 11 the results of the across-contexts extrapolation separately for boys
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and girls in the Moroccan CCTs’ sample. In all of the results, I use the normalized years of

education as it substantially improves the overall prediction accuracy with no adverse effects.

I do not find improvement differentially across children’s gender. For girls, I also examine

the predictions separately for older cohorts. Columns (3) and (6) show that as the treatment

effect of the Moroccan CCTs for the older girls is larger than for girls of all ages, the predicted

effect is also larger for that age group. However, I still underpredict the treatment effect (for

example, in column (3), 2.2 percentage points compared to 13.9 percentage points). Thus, the

across-contexts extrapolation does not improve predictions by focusing on the Moroccan CCTs’

children of the same gender in the same age cohorts.

Table 11: Across-contexts extrapolation across age and gender of Moroccan CCTs’ sample

Across-contexts

Linear RF

Boys Girls Boys Girls

(1) (2) (3) (4) (5) (6)
Age ≥ 12 Age ≥ 12

Treatment 0.0151∗∗∗ 0.0148∗∗∗ 0.0221∗∗∗ 0.0206∗∗∗ 0.0165∗∗∗ 0.0346∗∗∗

(0.00109) (0.00129) (0.00258) (0.00296) (0.00343) (0.00623)

Control mean 0.902∗∗∗ 0.903∗∗∗ 0.880∗∗∗ 0.867∗∗∗ 0.872∗∗∗ 0.809∗∗∗

(0.000913) (0.00112) (0.00222) (0.00250) (0.00297) (0.00552)
Obs. 2666 2313 858 2666 2313 858
Normalization X X X X X X
Target ITT 0.048 0.068 0.139 0.048 0.068 0.139
= Target ITT 0.000 0.000 0.000 0.000 0.000 0.000
95% CI of ITT [0.013, 0.017] [0.012, 0.017] [0.017, 0.027] [0.015, 0.026] [0.010, 0.023] [0.022, 0.047]
Target control mean 0.912 0.871 0.709 0.912 0.871 0.709
= Target control mean 0.000 0.000 0.000 0.000 0.839 0.000
95% CI of control mean [0.900, 0.904] [0.901, 0.905] [0.876, 0.884] [0.863, 0.872] [0.866, 0.878] [0.798, 0.820]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are included in all regressions.
Observations are weighted by sampling weights. Linear indicates the linear extrapolation of ∆R (e;x) using the second order polyno-
mials of years of education while RF does the Random Forest algorithm on years of education. Normalization means the normalized
years of education are used. I report p-values from F-tests on the null hypothesis that the predicted value is equal to the estimated
one, separately for the treatment effect and the control mean.
*** p<0.01 ** p<0.05 * p<0.1

I also examine the performance of the across-contexts extrapolation across age cohorts of

the Malawi CCTs’ sample. In particular, when extrapolating ∆R (e;x) , I only use children aged

from 13 to 16, which is the highest age of the Moroccan CCTs’ sample.32 Table 12 shows results

separately for boys and girls in the Moroccan CCTs’ sample. I find that the sample restriction
32To do this analysis, I need to re-estimate the model with children’s age as a new state variable to make

∆R (e;x) vary by age. The new parameter estimates are available in Table G.3 and Figure G.2 in Appendix G.
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on the Malawi CCTs’ sample does not further improve the predictions of the across-contexts

extrapolation.

Thus, while eliminating differences in years of education narrows the performance gap

between the two extrapolations by improving the prediction of the school enrollment rate of the

control group, the additional sample restrictions based on children’s gender and age do not lead

to further improvement in the across-contexts extrapolation predictions. Moreover, neither of

these modifications improves the prediction of the treatment effect. Although these results may

change if adjusting more dimensions in which the two interventions differ, it is unlikely that the

prediction accuracy improves substantially, given that the causal forest algorithm with all of

the covariates available in my data underpredics the treatment effect as shown in Appendix B.

Therefore, observable differences in the target populations across the contexts may not fully

explain the disparity in the two extrapolation approaches.

Table 12: Across-contexts extrapolation using young cohorts of Malawi CCTs’ sample

Across-contexts
Linear RF

(1) (2) (3) (4)
Boys Girls Boys Girls

Treatment 0.00376∗∗∗ 0.00402∗∗∗ 0.00664∗∗∗ 0.00658∗∗∗
(0.000254) (0.000318) (0.000113) (0.000134)

Control mean 0.980∗∗∗ 0.980∗∗∗ 0.963∗∗∗ 0.963∗∗∗
(0.000211) (0.000270) (0.0000839) (0.000108)

Obs. 2666 2313 2666 2313
Normalization X X X X
Target ITT 0.048 0.068 0.048 0.068
= Target ITT 0.000 0.000 0.000 0.000
95% CI of ITT [0.003, 0.004] [0.003, 0.005] [0.006, 0.007] [0.006, 0.007]
Target control mean 0.912 0.871 0.912 0.871
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.980, 0.980] [0.979, 0.980] [0.963, 0.963] [0.963, 0.963]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are
included in all regressions. Observations are weighted by sampling weights. Linear indicates the linear
extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does the
Random Forest algorithm on years of education. Normalization means the normalized years of education
are used. I report p-values from F-tests on the null hypothesis that the predicted value is equal to the
estimated one, separately for the treatment effect and the control mean.
*** p<0.01 ** p<0.05 * p<0.1
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5.3 What explains variation in perceived relative returns to

schooling across contexts?

So far, I have shown that the across-policies extrapolation outperforms the across-contexts

extrapolation. This suggests that the two Moroccan interventions function similarly compared

to the two CCTs across the contexts. From the decomposition analysis, I have also shown that

the discrepancy in the prediction results between the two extrapolation approaches stems from

the perceived relative returns to schooling rather than the flow utility cost of schooling. Finally,

the cross-contexts variation in the relative returns cannot be solely attributed to differences in

the target populations.

One explanation that aligns with these observations is that the underlying mechanisms

of these interventions are reflected in the perceived relative returns to schooling. Intuitively,

in my identification argument, the two parameters represent distinct mechanisms regarding

how the cash transfers affect schooling decisions. The flow utility cost of schooling is identified

with the variation in the probability of schooling explained by the exogenous changes in the

utility cost of schooling due to the cash transfers. This identification argument is based on

the economic reasoning that the cash transfers induce schooling by relaxing today’s budget

constraints. On the other hand, the identification of the relative returns captures any deviations

from that mechanism as they are identified with the residual variation. Therefore, the fact that

the relative returns are similar for the two Moroccan interventions and play an important role

in prediction accuracy suggests that the predictions via the across-policies extrapolation are

successful because the effects of the two Moroccan interventions are driven by the same but

unconventional mechanisms.

Consistent with this explanation, Benhassine et al. (2015) discussed two possible factors

that made the two interventions similar to each other. The first factor is a signaling effect

about the importance of education. The authors argued that the endorsement of the program

by the Ministry of Education created the signaling effect that could be the main driver of the

effects of both interventions. While this additional effect attached to the cash transfers seems

to exist in the Malawi experiment according to in-depth interviews in Baird et al. (2011), the

size of this effect could vary across the experiments, making it difficult for the across-contexts

extrapolation to predict ∆R (e;x) as accurately as the across-policies extrapolation.33

33Baird et al. (2011) implied on page 1720 the existence of the signaling effect: “The evidence from the
in-depth interviews makes it clear that the UCT experiment did not happen in a vacuum. Instead, it took place
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Another factor is that the parents of the CCTs’ treated children misunderstood the condi-

tionality attached to the cash transfers. Table 13 shows that 11.1 percent of them in my data

correctly understood the conditionality attached to the CCTs. Moreover, only 14.4 percent

of them thought that they could receive the transfers by enrolling their children in school.

Therefore, the large fraction of the Moroccan CCTs’ sample treated the transfers as uncondi-

tional, which could have removed the substitution effects of the CCTs. In contrast, although

my data lack information about how the Malawi CCTs’ sample perceived the conditionality, the

misunderstanding might have been less prevalent in the Malawi experiment as Baird et al. (2011)

showed that the UCTs implemented along with the CCTs did not increase school enrollment.

Their in-depth interviews also revealed that girls in the UCT treatment group understood

that there was no conditionality attached to the cash transfers. If the income effects of the

two Moroccan interventions are comparable, then it might be easier to extrapolate across the

policies than the contexts, although the confusion about the conditionality is unlike to be the

primary explanation for the prediction differences, given that the estimates of θ are sufficiently

different across the two Moroccan interventions.

Table 13: Knowledge about conditionality in Moroccan experiment

(1) (2)
CCTs LCTs

Know program 0.999 1.000
Think transfers are conditional on enrollment 0.144 0.121
Think transfers are conditional on 5 absences 0.111 0.085
Obs. 3704 1740

Note: Observations are weighted by sampling weights. Knowledge about the
conditionality is taken from the second round of the Moroccan household
survey.

Nevertheless, I examine whether the across-contexts extrapolation could make more accurate

predictions if the Moroccan CCTs’ sample understood the conditionality correctly. To do

this analysis, I compute the treatment effect of the Moroccan CCTs assuming the perfect

understanding. Specifically, I first estimate my model under the Moroccan CCTs incorporating

the knowledge about the conditionality: if a respondent answered that the cash transfers were

conditional on school enrollment or regular attendance, the cash transfers are treated as CCTs

and are subtracted from the school costs, and if not, they are treated as unconditional and

under a rubric of education that naturally led the beneficiaries to believe that the program aimed to support girls
to further their education.”
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are added to the per-capita income. After estimating the model, I then simulate schooling

decisions assuming that everyone understands the conditionality so that the cash transfers are

treated as a subsidy to the school costs for everyone, and compute the treatment effect.34 If the

confusion explains the success of the across-policies extrapolation, the predictions of the new

treatment effect are more accurate via the across-contexts extrapolation than the across-policies

extrapolation.

Table 14: Prediction of treatment effect on school enrollment rates under perfect understanding
Across-contexts (structural) vs Across-policies (structural)

Estimation Across-contexts Across-policies
(1) (2) (3) (4)

Original Counterfactual Linear Linear
Treatment 0.0567∗∗∗ 0.122∗∗∗ 0.0431∗∗∗ 0.0590∗∗∗

(0.0106) (0.00836) (0.00465) (0.00545)

Control mean 0.894∗∗∗ 0.868∗∗∗ 0.702∗∗∗ 0.941∗∗∗
(0.00951) (0.00814) (0.00390) (0.00531)

Obs. 4982 4982 4982 4982
Target ITT 0.122 0.122
= Target ITT 0.000 0.000
95% CI of ITT [0.034, 0.052] [0.048, 0.070]
Target control mean 0.868 0.868
= Target control mean 0.000 0.000
95% CI of control mean [0.694, 0.710] [0.931, 0.952]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are
included in all regressions. Observations are weighted by sampling weights. Original indicates the original
estimates of the ATE and the control group’s enrollment rates using my data while Counterfactual does the
simulated ones when I assume that the conditionality is perfectly understood. Linear indicates the linear
extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does the
Random Forest algorithm on years of education. I report p-values from F-tests on the null hypothesis that
the predicted value is equal to the estimated one, separately for the treatment effect and the control mean.
*** p<0.01 ** p<0.05 * p<0.1

Column (2) in Table 14 displays the counterfactual treatment effect of the Moroccan CCTs.

If the conditionality were perfectly understood, then the Moroccan CCTs would have increased

the school enrollment rate of the treatment group by 12.2 percentage points from a base of 86.8

percent, which is more than twice as large as the originally estimated effect size reproduced

in column (1). Moreover, it is greater than the effect of the Moroccan LCTs by 5 percentage

points. However, columns (3) and (4) show that neither of the extrapolations predicts the
34To obtain counterfactual perceived relative returns to schooling, I train the Random Forest algorithm on

the state variables with the confusion and generate predicted values based on the same set of variables without
the confusion.
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counterfactual treatment effect accurately, whereas the predicted values of the across-policies

extrapolation are still numerically closer to the target estimates. Therefore, removing the degree

of confusion about the conditionality among the Moroccan CCTs’ sample does not result in

better performance of the across-contexts extrapolation. In other words, the poorer performance

of the across-contexts extrapolation cannot be solely explained by the confusion levels regarding

the conditionality.

6 Conclusion

Predicting the effects of CCT programs on educational outcomes is crucial for policymakers

who want to improve domestic education with limited budgets. Provided that the effect size of

CCT programs may vary by contexts, the quantification of the effects of CCT programs helps

policymakers understand whether the programs are worth implementation. Existing studies

have proposed various approaches for the extrapolation of the estimates of policy effects across

contexts. The key assumption they make is that conditional on observables, potential outcomes

are independent of context characteristics. However, this assumption may not hold, especially

when we have to rely on CCT programs implemented in other contexts that are not necessarily

comparable. In such a case, an alternative way of predicting effects is to extrapolate from an

adjacent policy in the same context that resembles how CCTs affect educational outcomes.

Little is known, however, about the differences between the two extrapolations in the ability to

make accurate predictions.

This paper empirically studies this question using the cash transfer experiments in Malawi

and Morocco. My analysis reveals that the across-policies extrapolation outperforms the across-

contexts extrapolation in accurately predicting the treatment effect of the Moroccan CCTs

on school enrollment. By interpreting the prediction differences with the parameters in my

structural model, I find that the primary driver of the differential predictions is the perceived

returns to schooling measured against outside options. Finally, I investigate the sources of

variation in the relative returns across the contexts. I find that differences in the observable

characteristics of the target populations cannot fully explain the cross-contexts variation of the

relative returns. I then suggest that the remaining variation can be attributed to the differences

in how the three cash transfer interventions improve school enrollment.

While this paper explores the two extrapolations in the case of CCTs, the intuition that
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understanding the underlying mechanisms of policies is important for successful out-of-sample

predictions applies to other settings. Compared to extrapolation across contexts, however, the

predictive power of extrapolation across policies has been understudied in previous literature.

Since this paper is the first to conduct a comparative analysis of the two extrapolations, the

generalizability of my findings is an interesting avenue for future research.35

Another promising research avenue is how to aggregate evidence from various policies to

make predictions. I show that the utility costs of schooling vary similarly under the same policy

while the perceived relative returns to schooling do so under the same context. Thus, it is

natural to think that a better prediction can be made by borrowing the best parameters from

each intervention. This idea, however, may not immediately work. In Table G.2 in Appendix G,

I find no improvement of the across-policies extrapolation by using the estimated value of θ

because it distorts the ratio of the relative utility of schooling to the relative returns to schooling.

Therefore, it is necessary to maintain the size balance of parameter values when borrowing them

from multiple policies in order to make accurate predictions. However, how to do so and what

it means in economics are beyond the scope of this paper and require further investigation.

Finally, this paper has implications for policy design. As Hendren and Sprung-Keyser (2020)

suggested, policymakers are willing to pay for precise estimates of policy effects.36 Globally, this

suggests potential benefits of coordination in policy designs across countries so that extrapolation

across contexts can make accurate predictions. Locally, on the other hand, this suggests that a

welfare-maximizing policymaker wants to design policies to be informative about future policies.

My comparative analysis of the two extrapolations articulates both points empirically in the

case of predicting the treatment effects of CCTs on school enrollment.
35Theoretical work on the predictive power of extrapolation across contexts is emerging. For example, Andrews

et al. (2022) proposed how to measure the ability of economic models to transfer evidence across contexts.
36Relatedly, Hjort et al. (2021) showed that Brazilian mayors were willing to pay for research findings about

policy evaluations.
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Appendix

A Predictions based on treatment effect estimates

The simplest approach to predict the treatment effect of CCTs in a new context is to use a

collection of treatment effect estimates of CCTs in other settings, which may be more practical

for policymakers. Using the information summarized in Baird et al. (2014), I demonstrate the

performance of this approach.

Figure A.1: Reported treatment effect estimates in Baird et al. (2014)

Morocco

Malawi

Bangladesh

Bolivia

Brazil
Brazil

Burkino Faso

Cambodia

Cambodia

Chile

China

Colombia
Colombia

Ecuador

El Salvador

Honduras

Indonesia

Indonesia

Mexico
Mexico

Nicaragua

Panama

Paraguay
Peru

Philippines

Turkey

Uruguay

-.05

0

.05

.1

.15

.2

Tr
ea

tm
en

t e
ffe

ct
s

on
 e

nr
ol

lm
en

t r
at

es

0 5 10 15 20 25 30 35
Transfer amount

(% of Average household income)

Specifically, I make predictions based on a linear relationship between treatment effect

estimates and the transfer amount of each program. To do this, I first collect from the article

the following information about CCT programs; where and when they were implemented,

whether they were RCTs or not, treatment effects on the odds of schooling, baseline school

enrollment rates of control groups, and transfer amount measured as a share of average household

income. Then, I recover treatment effects on the school enrollment rates for each program using

treatment effects on the odds of schooling and the school enrollment rates of the control groups:

TEenrollment = TEodds ×OddsControl

1 +TEodds ×OddsControl −EnrollmentControl.

Finally, I regress treatment effects on the school enrollment rates on the transfer amount and

predict the treatment effect of the Moroccan CCTs with the average ratio of the transfer amount
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to household income for the Moroccan CCTs in my data, which is 2.3 percent.

I make several predictions using different sets of CCT programs: (1) using all of the CCTs,

(2) using the CCTs up to 2008 (when the Moroccan CCTs were implemented), (3) using the

CCTs in African countries, and (4) using the CCTs implemented in the form of RCTs.A.1

Figure A.2 shows the prediction results. While the predictions are numerically close to the

estimated effect, they vary across the sample CCTs. To understand what causes the variation

and potentially improve the predictions, I focus on a subset of the CCTs that offer more granular

data, which motivates my analysis in the main text.

Figure A.2: Simple predictions of effect of Moroccan CCTs on school enrollment rates
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A.1The third and fourth predictions are motivated by Vivalt et al. (2022), which showed that policymakers
appreciated evidence from similar contexts while researchers valued evidence with internally valid evaluation
methods.
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B Causal forest for across-contexts extrapolation

In the reduced-form approaches for the across-contexts extrapolation, I select the set of

conditioning variables based on the demographics of the target populations and schooling

decisions implied by my structural model. However, a more data-driven way of selecting

covariates could improve the performance of the across-contexts extrapolation by identifying

hidden moderators of the treatment effect. To check if my results are sensitive to how to select

covariates, I predict the treatment effect by using the causal forest algorithm proposed in Wager

and Athey (2018). In particular, I first estimate the conditional average treatment effects

(CATEs) using the causal forest with the Malawi CCT’s sample, predict the CATEs for the

Moroccan CCT’s sample, and aggregate them to obtain the average treatment effect.B.1

To implement the causal forest, I first prepare covariates that are common across the two

datasets. In addition to the existing covariates, I include (1) the gender and marital status of

household heads, (2) the number of household members younger than 6, older than 18, and at

school, parental education levels, (3) whether residence has a metal roof, electricity, and latrines,

(4) whether households have a TV, and mobile phone, and (5) whether households have a land,

saving technology, and livestock. To identify which covariate moderates the treatment effect,

the causal forest splits the sample based on the values of these variables, and estimates the

conditional average treatment effects for each subsample to determine whether to grow trees

or not. Figure B.1 shows the importance of each covariate, which is computed based on the

number of times the causal forest grow trees on that variable.B.2

B.1I use the R package grf of version 2.2.1 to implement this. The documentation is available here: https:
//grf-labs.github.io/grf/articles/grf.html.

B.2The number of trees is set at 2000. The distribution of the variable importance remains almost the same
when I increase the number of trees to 5000 or 10000.
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Figure B.1: Importance of variables for CATEs
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After running the causal forest with the Malawi CCT’s sample, I predict the treatment

effect of the Moroccan CCTs with the predicted CATEs for the Moroccan CCTs’ sample.

Table B.1 shows that the across-contexts extrapolation predicts the school enrollment rate for

the treatment group is statistically significantly higher than the control group by 3.7 percentage

points. However, regarding prediction accuracy, the null hypothesis on the equality between the

predicted and estimated treatment effects is rejected at a significance level of 0.01, suggesting

that the across-contexts extrapolation still mispredicts the target treatment effect. Thus, the

conclusion that the across-policies extrapolation outperforms the across-contexts extrapolation

remains unchanged.

Table B.1: Across-contexts extrapolation: causal forest

Target: Morocco CCTs Across-contexts
Treatment 0.037∗∗∗

(0.000)
Obs. 4982
Target ITT 0.057
= Target ITT 0.000
95% CI of ITT [0.037,0.037]

Note: Standard errors in parentheses. I report p-
values from F-tests on the null hypothesis that the
predicted value is equal to the estimated one.
*** p<0.01 ** p<0.05 * p<0.1
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C Choice probabilities estimation

In the first step of my structural estimation, I estimate the choice probabilities with a flexible

logit of the state variables either via MLE or GMM. The choice of the estimation method depends

on whether the resulting estimates can replicate the shares of children choosing schooling for

the treatment and control groups in each survey round. Both estimations empirically yield

similar estimates of the parameters of the logit.

The reason why the GMM estimates sometimes can replicate treatment effects when the MLE

estimates cannot is because of a trade-off between prioritizing individual choice probabilities

versus aggregate shares. GMM directly targets aggregate shares while MLE maximizes the

likelihood of individual choices. This trade-off is salient when I estimate the choice probabilities

under the Moroccan LCTs because relative changes in income due to the cash transfers are small.

Therefore, MLE may not be able to sufficiently differentiate the choice probabilities across the

treatment status, leading to imprecise estimates of the treatment effect of the Moroccan LCTs

at this stage. This issue can be mitigated by using GMM, although GMM does not necessarily

maximize the likelihood of the data. Given this trade-off, I use MLE for the Malawi CCTs and

GMM for both of the Moroccan interventions. The replication under the Moroccan CCTs with

the GMM estimates is only slightly better than with the MLE estimates. On the other hand,

GMM significantly improves the replication under the Moroccan LCTs. The estimates of the

two parameters in my structural model estimated either way for all of the interventions are

displayed in Table C.2 and Figure C.1.

The flexible logit consists of the second-order polynomials of the state variables, fully

interacting with survey round dummy variables. The number of parameters to estimate is 30

for the Malawi intervention and 20 for the two Moroccan interventions. When I estimate the

choice probabilities via GMM, I need to have more moment conditions than the number of

parameters. Thus I construct as my moments the shares of children choosing schooling across

grades, treatment status, and survey rounds. The resulting number of moment conditions is 49

for the Malawi intervention and 24 for the Moroccan interventions.C.1 When estimating the

choice probabilities via MLE, I maximize the likelihood weighted by sampling weights. When

estimating via GMM, I also weigh observations with sampling weights. In addition, I use the
C.1Since children at baseline were all in school in the Malawi data, I do not observe children in grade 12 at
baseline. I also have a small number of children in grades 1 to 6. As a result, the number of moment conditions
is 49, less than 72 (12 grades × 2 groups × 3 rounds). On the other hand, in the Moroccan data, the number of
moment conditions is 24 (6 grades × 2 groups × 2 rounds).
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sample size of each moment as a weighting matrix to prioritize treatment effects for larger

subgroups. Finally, I solve the minimization problem using the Nelder-Mead algorithm with

the MLE estimates as the starting points. The algorithm always returns the same estimates,

although the estimation results are robust to different algorithms. The parameter estimates are

presented in Table C.1.

Finally, after estimating the parameters in the flexible logit, I obtain the choice probabilities

estimates as the predicted values, and construct the dependent variable in Equation (2). In

this step, I top-code the estimated probabilities higher than 0.99 to 0.99 for two reasons. First,

there are observations with the probabilities being 1, which should not happen theoretically,

because of the numerical precision of computation software. If P 1
it or P 3

i,t+1 is numerically 1,

then I cannot define the dependent variable and these observations are dropped from my sample

of analysis. Since this is more likely to occur among the treated children, I would underestimate

the probability of schooling for the treatment group if dropping such observations. The top

coding of the choice probabilities avoids this issue by keeping them in the subsequent analysis.

Second, without the top-coding, I find P 2
i,t+1 and P 3

i,t+1 higher for the treatment group than

the control group in all of the interventions while P 1
it is similar across the groups. This is

consistent with the treatment effects taking place just after the first round of household surveys.

However, I find that P 2
i,t+1

1−P 3
i,t+1

is significantly smaller for the treatment group. This happens

because without the top-coding, observations with estimated probabilities extremely close to 1

can have huge values of P 2
i,t+1

1−P̂ 3
i,t+1

. For instance,
(
P 2
i,t+1,P

3
i,t+1

)
= (0.9999,0.9999) has more than

100 times large values than
(
P 2
i,t+1,P

3
i,t+1

)
= (0.99,0.99), although both can be interpreted as

the child almost surely chooses schooling. If these observations are more likely to appear in the

control group, then I could have a smaller P 2
i,t+1

1−P 3
i,t+1

for the treatment group. By top-coding the

probabilities estimates above 0.99, I do not distort the average of
(
P 1
it,P

2
i,t+1,P

3
i,t+1

)
while I

have significantly larger values of P 2
i,t+1

1−P 3
i,t+1

for the treatment group.
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Table C.1: Estimates of parameters in flexible logit

Malawi Morocco
CCTs CCTs LCTs

MLE GMM MLE GMM MLE GMM
eit 0.091 0.330 27.425 27.569 13.049 10.409
yit 0.357 3.174 -0.114 -0.453 -0.351 -0.403
sit -3.505 2.382 381.601 382.367 256.707 299.118
e2
it -0.016 -0.014 -1.399 -1.394 -0.577 -0.365
y2
it -0.008 -0.065 -0.003 0.056 0.001 0.164
s2
it -15.241 -10.048 27.342 28.698 -173.538 -174.620
eit×yit -0.023 -0.348 0.053 0.010 0.059 0.300
yit× sit 0.044 -3.783 0.421 -0.166 1.361 -10.152
sit× eit 1.214 1.361 -77.725 -77.687 -39.236 -38.758
r2 -25.358 -27.056 104.663 101.515 133.165 140.028
r3 -27.848 -33.179 - - - -
eit× r2 1.757 1.485 -27.888 -27.751 -33.495 -36.704
yit× r2 0.411 1.297 0.156 0.811 0.590 3.219
sit× r2 4.952 7.685 -383.342 -386.879 -504.754 -566.107
eit× r3 1.517 1.826 - - - -
yit× r3 1.154 1.723 - - - -
sit× r3 1.363 -0.280 - - - -
e2
it× r2 -0.098 -0.122 1.366 1.304 1.392 1.184
y2
it× r2 -0.047 1.566 0.000 -0.035 -0.003 -0.172
s2
it× r2 15.513 13.557 -26.469 -26.383 -23.792 -55.242
e2
it× r3 -0.059 -0.061 - - - -
y2
it× r3 -0.017 0.372 - - - -
s2
it× r3 14.575 14.291 - - - -
eit×yit× r2 0.022 0.261 -0.054 -0.002 -0.087 0.114
yit× sit× r2 -0.546 -3.771 -0.429 1.085 -1.429 -1.853
sit× eit× r2 -1.341 -1.919 78.072 77.831 100.196 115.435
eit×yit× r3 -0.066 -0.249 - - - -
yit× sit× r3 -0.060 -5.051 - - - -
sit× eit× r3 -1.038 -0.626 - - - -
Constant 19.652 20.662 -100.129 -99.584 -53.568 -52.544

Note: Observations are weighted by sampling weights.
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Table C.2: Estimates of θ separately for using MLE and GMM estimates

Malawi Morocco
CCTs CCTs LCTs

(1) (2) (3) (4) (5) (6)
θ 1.008∗∗∗ 0.834∗∗∗ 5.254∗∗∗ 2.670∗∗∗ 7.884 38.90∗∗∗

(0.256) (0.283) (0.247) (0.454) (4.818) (11.30)
Obs. 1479 1479 4981 4981 3016 3016
1st stage F-value 113.011 113.011 3843.510 3843.510 25.483 25.483
CCP estimation MLE GMM MLE GMM MLE GMM

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed
effects are included in all regressions. Observations are weighted by sampling weights. I report
the Kleibergen-Paap F statistics for weak identification.
*** p<0.01 ** p<0.05 * p<0.1

Figure C.1: Empirical distribution of ∆R (e;x) separately for using MLE and GMM estimates
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D Fitness of structural model to Moroccan LCTs data

With the parameter estimates in Section 4.2.2, I assess the fitness of my model to the Moroccan

LCTs’ data based on the simulated treatment effect and the school enrollment rate of the

control group. Following the procedures described in Section 3.2.4 but using the data from the

Moroccan LCTs, I obtain δ̂1 and δ̂2. I then run statistical tests separately:

Hk
0 : δk = α̂k for k ∈ {1,2},

where α̂1 and α̂2 are from the estimation of Equation (5).D.1

Column (3) in Table D.1 presents the predicted values of the treatment effect of the Moroccan

LCTs and the school enrollment rate of the control group. The results indicate that the Moroccan

LCTs increase the enrollment rate of the treatment group by 5.39 percentage points from a base

of 90 percent. The statistical tests show that the null hypotheses about the equality between

the predicted and estimated values are not rejected at a significance level of 0.05 for both

predictions. These results support the good fitness of my model to the data with which it is

estimated. It is worth noting that the good fitness of my model is ex-ante expected as I choose

the estimation method to match these moments with the estimates of the choice probabilities.

I also check how accurately my model can predict individual decisions. Since I choose

GMM to estimate the choice probabilities to replicate the treatment effect while sacrificing the

maximization of the likelihood of the data, it is possible that the choice probabilities estimates

may not be as accurate at the individual level. To empirically investigate this, I simulate

individual decisions by drawing preference shocks and compute the share of children with the

simulated decisions matched with the actual decisions. Column (3) in Table D.2 shows that

my model correctly simulates the individual choices for nearly 90 percent of the Moroccan

LCTs’ sample. I also check if my model systematically overestimates
(
dData
it = 0,dModel

it = 1
)
or

underestimates
(
dData
it = 1,dModel

it = 0
)
schooling decisions, and find that it makes prediction

errors in both directions at similar rates.

For completeness, I also present these two accuracy tests for the models estimated with
D.1Another way of estimating the treatment effects is to draw the preference shocks from the type-I extreme
value distribution for all observations and use the simulated schooling decisions for the dependent variable in
Equation (4). This approach is theoretically identical to mine, except that the standard errors would be larger.
This is because the simulated decisions are binary while the choice probabilities are continuous between 0 and 1.
This difference would affect the results of the statistical tests. I do not simulate the decisions because they may
vary by the draws of the preference shocks.
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the Malawi and Moroccan CCTs. Results in Tables D.1 and D.2 suggest that the model is

able to replicate the treatment effects as well as individual schooling decisions for those two

interventions.

Table D.1: Replication of treatment effect for all interventions

Malawi Morocco

(1) (2) (3)
CCTs CCTs LCTs

Treatment 0.0317∗∗∗ 0.0554∗∗∗ 0.0539∗∗∗

(0.00495) (0.00777) (0.00954)

Control mean 0.895∗∗∗ 0.894∗∗∗ 0.900∗∗∗

(0.00241) (0.00747) (0.00889)
Obs. 1490 4982 3018
Target ITT 0.037 0.057 0.073
= Target ITT 0.290 0.869 0.051
95% CI of ITT [0.022, 0.041] [0.040, 0.071] [0.035, 0.073]
Target control mean 0.896 0.894 0.893
= Target control mean 0.721 0.981 0.476
95% CI of control mean [0.890, 0.899] [0.879, 0.909] [0.882, 0.917]

Note: Clustered standard errors (randomization units) in parentheses.
Sampling strata fixed effects are included in all regressions. Observations
are weighted by sampling weights. I report p-values from F-tests on the
null hypothesis that the predicted value is equal to the estimated one, sep-
arately for the treatment effect and the control mean.
*** p<0.01 ** p<0.05 * p<0.1

Table D.2: Model fitness at individual level for all interventions

Malawi Morocco
(1) (2) (3)

CCTs CCTs LCTs
Correct 0.828 0.888 0.887
Overestimation 0.080 0.057 0.057
Underestimation 0.091 0.055 0.056

Note: I use the second round of each household survey
as the estimation samples. Observations are weighted
by sampling weights.
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E Reduced-form approaches with normalized variables

As shown in Tables 5 and 6 (also in Table B.1), the predictions of the treatment effect via

the across-contexts extrapolation vary by the extrapolation methods, especially for the school

enrollment rate of the control group. Specifically, the reduced-form methods predict the

treatment effect as 1.56 percentage points from 98.4 percent in the heterogeneous treatment

effects approach and null effects from 89.5 percent in the propensity score weighting while the

structural methods predict as 4.3 or 4.1 percentage points from 70.2 or 67.6 percent. In Table 10,

I also show that the structural model predicts the treatment effect as 1.5 to 1.9 percentage

points from 87 percent when adjusting years of education to overlap between the two contexts.

One explanation for the differences between the reduced-form versus structural approaches

is the normalization of variables. In particular, cash transfer amount and school costs are

(implicitly) defined relative to per-capita income in the structural model, whereas the reduced-

form methods use the absolute values in prediction. Given that school costs and per-capita

income are on average higher in the Moroccan experiment than in the Malawi experiment,

ignoring these level differences could lead to divergent predictions. It is thus natural to

ask whether the reduced-form approaches produce different predictions with the normalized

variables.

Table E.1 shows the performance of the across-contexts extrapolation when normalizing

covariates used in the reduced-form methods. Columns (1) and (4) reproduce the results in

Table 5. Columns (2) and (5) show results when cash transfer amount and school costs are

defined as a fraction of per-capita income. The predictions do not improve relative to those in

columns (1) and (4), suggesting that the reduced-form and structural approaches yield different

predictions not because of defining cash transfer amount and school costs in relative terms.

Columns (3) and (6) show results when years of education and children’s age are additionally

standardized. The predictions substantially improve for both extrapolation methods. This

is consistent with the analysis that years of education should have a common support across

the contexts to better extrapolate the perceived relative returns to schooling when using the

structural method for the across-contexts extrapolation. What accounts for these differences

across the extrapolation methods is, however, beyond the scope of this paper.

60



Table E.1: Reduced-form extrapolation with normalization of variables

HTE PSW

(1) (2) (3) (4) (5) (6)
Treatment 0.0156∗∗∗ 0.0175∗∗∗ 0.0232∗∗∗ 0.00660 -0.0459∗∗ 0.0655∗∗∗

(0.000535) (0.000765) (0.00327) (0.0184) (0.0202) (0.0140)

Control mean 0.984∗∗∗ 0.979∗∗∗ 0.899∗∗∗ 0.895∗∗∗ 1.000∗∗∗ 0.920∗∗∗

(0.000515) (0.000749) (0.00252) (0.0128) (0.00221) (0.0112)
Obs. 4982 4982 4982 1490 1490 1490
Target ITT 0.057 0.057 0.057 0.057 0.057 0.057
= Target ITT 0.000 0.000 0.000 0.007 0.000 0.534
95% CI of ITT [0.015, 0.017] [0.016, 0.019] [0.017, 0.030] [-0.030, 0.043] [-0.086, -0.006] [0.038, 0.093]
Target control mean 0.894 0.894 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.028 0.927 0.000 0.022
95% CI of control mean [0.983, 0.985] [0.978, 0.981] [0.894, 0.904] [0.869, 0.920] [0.996, 1.005] [0.897, 0.942]
Normalization of s,y,z X X X X
Normalization of e, age X X

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are included in all regressions.
Observations are weighted by sampling weights unless indicated otherwise. HTE indicates the heterogeneous treatment effects approach
while PSW does the propensity score weighting. Normalization of s,y,z means the cash transfer amount and the school costs are divided
by the per-capita income. Normalization of e, age means years of education and children’s age are standardized.
*** p<0.01 ** p<0.05 * p<0.1
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F Bias in predictions of school enrollment rates

I discuss how the varying estimates of θ and ∆R (e;x) across the interventions translate into

bias in the predictions of school enrollment rates. I argue that the bias can be attributed to

differences in the sizes of the parameter estimates. Specifically, extrapolation with a larger θ

than the one under the Moroccan CCTs is likely to overpredict the relative utility of schooling

for the treatment group while underpredicting it for the control group. This is because the

treatment children tend to have positive values for ln
(
y−s
y

)
as the CCTs covered more than the

school costs while the control group always has negative values. Thus, by multiplying by a larger

value, the relative utility for the treatment group becomes larger while that for the control group

gets smaller. In contrast, extrapolation with a distribution of ∆R (e;x) that is on average greater

than the one under the Moroccan CCTs is likely to overpredict the perceived relative returns to

schooling for both groups. This is because the extrapolation tends to assign larger values for

a given year of education than the estimated values. As a result, because the probability of

schooling is a function of the relative utility and the relative returns (and is increasing in the

sum of the two), the relative size of the parameter values across the interventions can determine

the direction of bias in predicting the enrollment rate of the treatment group.

Table F.1 summarizes the above discussion, provided that my parameter estimates reveal

the following relationships:

θMalawi CCTs < θMorocco CCTs < θMorocco LCTs,

and

E
[
∆R (e;x)Malawi CCTs]<E

[
∆R (e;x)Morocco CCTs]<E

[
∆R (e;x)Morocco LCTs] .

Therefore, the across-contexts extrapolation is subject to a downward bias while the across-

policies extrapolation is to an upward bias when predicting the school enrollment rate of the

treatment group. Consistent with this, in Table 6, I find that the across-contexts extrapolation

underpredicts it by 20 percentage points while the across-policies extrapolation overpredicts by

6 percentage points.

In contrast, the direction of the prediction bias for the school enrollment rate of the control

group is ambiguous in both extrapolations. Therefore, the discussion based on the average size

of the parameter estimates does not determine the direction of prediction bias for the treatment

effect of the Moroccan CCTs, which motivates the closer examination of the extrapolated

parameter values in Section 5.2.
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Table F.1: Direction of prediction bias for school enrollment rates

Across-contexts Across-policies
Treatment Control Treatment Control

θExtrapolated ln
(

1− si,2
yi,2

)
⇓ ⇑ ⇑ ⇓

∆RExtrapolated (ei,2;xi,2) ⇓ ⇓ ⇑ ⇑
θExtrapolated ln

(
1− si,2

yi,2

)
+β∆RExtrapolated (ei,2;xi,2) ⇓ ? ⇑ ?
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G Supplementary tables and figures

Figure G.1: Distributions of school expenditures

(a) Malawi - Primary school
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(b) Malawi - Secondary school
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(c) Morocco - Primary school
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Note: I use the children in the control group and pool them across the survey rounds. For the Malawi figures, I
drop the outliers with the expenditures higher than 20000 Malawi Kwacha (≈ 5 percent). For the Moroccan
figure, I drop the outliers with the expenditures higher than 2000 Moroccan Dirham (≈ 0.1 percent).
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Table G.1: Robustness of linear extrapolation of ∆R (e;x)

Across-policies
(1) (2) (3) (4)
1st 2nd (preferred) 3rd 4th

Treatment 0.0564∗∗∗ 0.0590∗∗∗ 0.0575∗∗∗ 0.0582∗∗∗
(0.00550) (0.00545) (0.00545) (0.00547)

Control mean 0.944∗∗∗ 0.941∗∗∗ 0.943∗∗∗ 0.942∗∗∗
(0.00536) (0.00531) (0.00532) (0.00534)

Obs. 4982 4982 4982 4982
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.947 0.674 0.886 0.793
95% CI of ITT [0.046, 0.067] [0.048, 0.070] [0.047, 0.068] [0.047, 0.069]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.933, 0.954] [0.931, 0.952] [0.932, 0.953] [0.931, 0.952]

Across-contexts
(1) (2) (3) (4)
1st 2nd (preferred) 3rd 4th

Treatment 0.0132∗∗∗ 0.0431∗∗∗ 0.0155∗∗∗ 0.0365∗∗∗
(0.000220) (0.00465) (0.000972) (0.0111)

Control mean 0.922∗∗∗ 0.702∗∗∗ 0.901∗∗∗ 0.614∗∗∗
(0.000177) (0.00390) (0.000855) (0.00927)

Obs. 4982 4982 4982 4982
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.000 0.004 0.000 0.070
95% CI of ITT [0.013, 0.014] [0.034, 0.052] [0.014, 0.017] [0.015, 0.058]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.921, 0.922] [0.694, 0.710] [0.899, 0.903] [0.595, 0.632]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects are
included in all regressions. Observations are weighted by sampling weights. I report p-values from F-tests
on the null hypothesis that the predicted value is equal to the estimated one, separately for the treatment
effect and the control mean. 1st, 2nd, 3rd, and 4th indicate the order of polynomials I include when using
the parametric extrapolation of ∆R (e;x).
*** p<0.01 ** p<0.05 * p<0.1
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Table G.2: Across-policies extrapolation with replacement of θ and ∆R (e;x)

Across-policies
Linear RF

(1) (2) (3) (4)
Treatment 0.00290∗∗∗ 0.297∗∗∗ 0.00301∗∗∗ 0.297∗∗∗

(0.000175) (0.0190) (0.000148) (0.0190)

Control mean 0.993∗∗∗ 0.702∗∗∗ 0.993∗∗∗ 0.702∗∗∗
(0.000157) (0.0184) (0.000134) (0.0184)

Obs. 4982 4982 4982 4982
Replace θ X X
Replace ∆R (e;x) X X
Target ITT 0.057 0.057 0.057 0.057
= Target ITT 0.000 0.000 0.000 0.000
95% CI of ITT [0.003, 0.003] [0.260, 0.335] [0.003, 0.003] [0.260, 0.335]
Target control mean 0.894 0.894 0.894 0.894
= Target control mean 0.000 0.000 0.000 0.000
95% CI of control mean [0.992, 0.993] [0.666, 0.739] [0.992, 0.993] [0.666, 0.739]

Note: Clustered standard errors (randomization units) in parentheses. Sampling strata fixed effects
are included in all regressions. Observations are weighted by sampling weights. Linear indicates the
linear extrapolation of ∆R (e;x) using the second order polynomials of years of education while RF does
the Random Forest algorithm on years of education. Replace θ and Replace ∆R (e;x) mean I use the
estimated value of each parameter under the Moroccan CCTs. I report p-values from F-tests on the null
hypothesis that the predicted value is equal to the estimated one, separately for the treatment effect and
the control mean.
*** p<0.01 ** p<0.05 * p<0.1
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Table G.3: Estimate of θ when age is added to state variables under Malawi CCTs

Malawi CCTs
(1) (2)

θ 1.008∗∗∗ 1.031∗∗∗
(0.256) (0.249)

Obs. 1479 1479
1st stage F statistics 113.011 113.011
CCP estimation MLE MLE
Age added X

Note: Clustered standard errors (randomization
units) in parentheses. Observations are weighted
by sampling weights. I report the Kleibergen-Paap
F statistics for weak identification.
*** p<0.01 ** p<0.05 * p<0.1

Figure G.2: Empirical distribution of ∆R (e;x,age) under Malawi CCTs
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